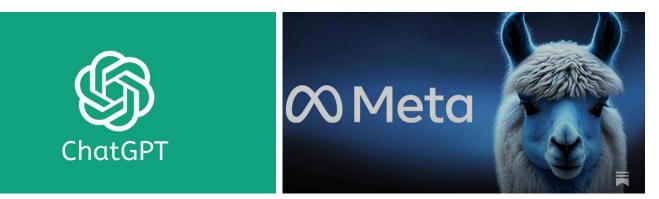


OmniLearn: Facilitating All Jet Physics Tasks

Vinicius M. Mikuni

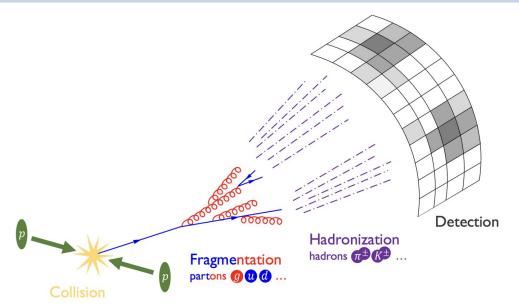
- Foundational models are everywhere now
- In essence, these models are trained on large datasets and can be used for multiple tasks
- How does a foundational model for science looks like?



BY ANTHROP\C

Model

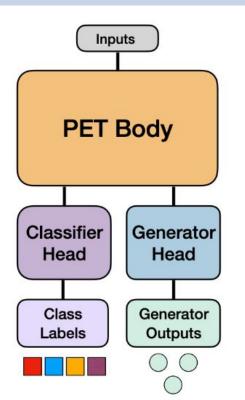
Learning



Jets are the most common signatures at the LHC

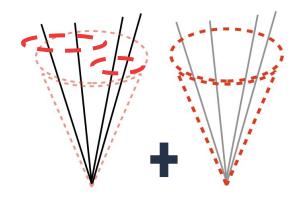
- Complicated signature: O(10-100) particles are clustered in each jet
- Everywhere: Jets are used in almost any analysis at the LHC

4



Point-Edge Transformer (PET)

- Combine local information with graphs
- Learn global information with Transformers:
 3M parameters



Not all datasets contain the same information:

- Let the model learn with and without some features
- Feature Dropout: With fixed probability, set some of the input features to 0

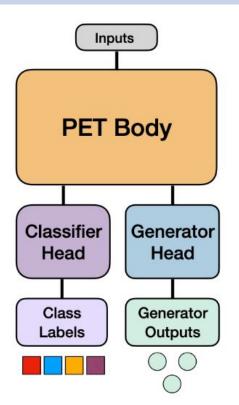
$$f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}$$

$$f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}$$

$$0,0,0,0$$

$$p = 0.1$$

More details at: <u>https://arxiv.org/abs/2404.16091</u>



Couple the network with multiple experts:

- **Classify jets**: learns the difference in radiation between jet types
 - radiation between jet types
- Generate jets: implicitly learn the likelihood of jets for different particles
- Multi-objective loss

$$egin{split} \mathcal{L} &= \mathcal{L}_{ ext{class}} + \mathcal{L}_{ ext{gen}} + \mathcal{L}_{ ext{class smear}} \ &= ext{CE}(y, y_{ ext{pred}}) + \left\| \mathbf{v} - \mathbf{v}_{ ext{pred}}
ight\|^2 + lpha^2 ext{CE}(y, \hat{y}_{ ext{pred}}) \end{split}$$

Straightforward loss function:

- Cross entropy for each class
- Perturbed data prediction from the **diffusion loss**
- Classification over perturbed inputs: data augmentation!

Language inspired models

- Data are tokenized
- Unsupervised and general pre-training
- Big models often required

OmniLearn

- Data are continuous
- HEP has one of the best simulators across all sciences: supervised pre-training
 Medium models that can fit on
 - standard GPUs are still useful

JetClass dataset used for training

• 100M jets

 10 different jet categories, AK8 jets simulated in pp collisions with Madgraph + Pythia8 with CMS Delphes detector simulation

Use the pre-trained model as the starting point and fine-tune using different datasets

2 different jet categories, AK8 jets simulated in pp collisions with Madgraph + Pythia8 with ATLAS Delphes detector simulation

2	Acc	AUC	$1/\epsilon_B$	
			$\epsilon_S = 0.5$	$\epsilon_S = 0.3$
ResNeXt-50 [38]	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN [38]	0.930	0.9803	201 ± 4	759 ± 24
PFN [35]	-	0.9819	247 ± 3	888 ± 17
ParticleNet [38]	0.940	0.9858	397 ± 7	1615 ± 93
JEDI-net [37]	0.9300	0.9807		774.6
PCT [41]	0.940	0.9855	392 ± 11	1559 ± 98
LGN [79]	0.929	0.964	-	435 ± 95
rPCN [39]	-	0.9845	364 ± 9	1642 ± 93
LorentzNet [10]	0.942	0.9868	498 ± 18	2195 ± 173
PELICAN [80]	0.9425	0.9869	-	2289 ± 204
ParT [42]	0.940	0.9858	413 ± 16	1602 ± 81
ParT-f.t. [42]	0.944	0.9877	691 ± 15	2766 ± 130
Mixer(HDBSCAN) [81]	-	0.9859	416	-
PET Classifier	0.938	0.9848	340 ± 12	1318 ± 39
OmniLearn	0.942	0.9872	568 ± 9	2647 ± 192

Better than all non-fine-tuned models and similar to PartT performance

2 different jet categories, AK4 jets simulated in pp collisions with Madgraph + Pythia8 with CMS Delphes detector simulation

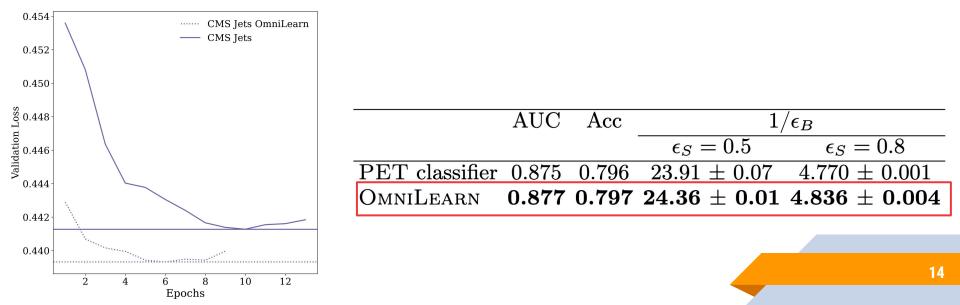
	Acc	AUC	$1/\epsilon_B$		
			$\epsilon_S = 0.5$	$\epsilon_S = 0.3$	
P-CNN [38]	0.827	0.9002	34.7	91.0	
PFN [35]	-	0.9005	$34.7{\pm}0.4$	-	
ParticleNet [38]	0.840	0.9116	$39.8{\pm}0.2$	$98.6{\pm}1.3$	
rPCN [39]	-	0.9081	38.6 ± 0.5	-	
ParT [42]	0.840	0.9121	41.3 ± 0.3	101.2 ± 1.1	
ParT-f.t. [42]	0.843	0.9151	42.4 ± 0.2	$\textbf{107.9}\pm\textbf{0.5}$	
PET classifier	0.837	0.9110	$39.92{\pm}0.1$	104.9 ± 1.5	
OmniLearn	0.844	0.9159	$\textbf{43.7}{\pm 0.3}$	$\textbf{107.7} \pm \textbf{1.5}$	

Better than all non-fine-tuned models and similar to PartT performance



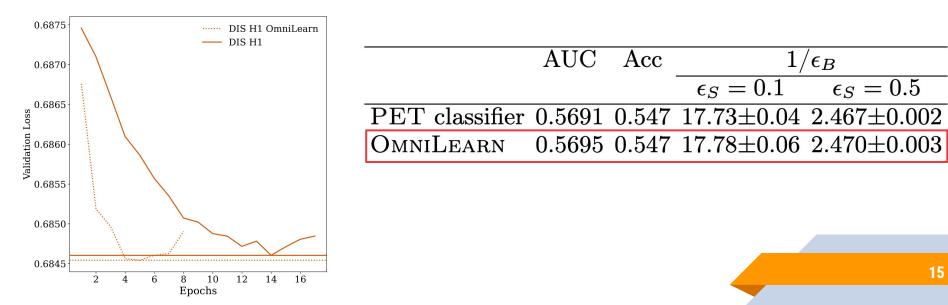
Faster training and better convergence

2 different jet categories, AK5 jets simulated in pp collisions with Pythia6 with Geant4 Simulation + CMS Particle flow reconstruction



15

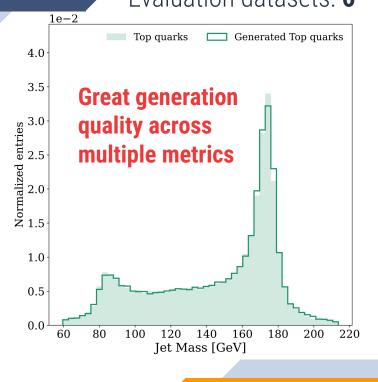
2 different jet categories, AK10 jets simulated in ep collisions with Rapgap with Geant3 Simulation + H1 Particle flow reconstruction



Jet Generation

Jet class	Model	W_1^{PM} (×10 ⁻³)	W_1^P (×10 ⁻³)	W_1^{PEFP} (×10 ⁻⁵)	FPND	$\operatorname{Cov}\uparrow$	MMD
	FPCD [52]	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.34} \pm \textbf{0.09}$	0.47 ± 0.13	0.07	0.55	0.03
Gluon	FPCD 1 [52]	0.65 ± 0.11	$\textbf{0.34} \pm \textbf{0.06}$	0.60 ± 0.09	0.11	0.55	0.03
	MP-GAN [44]	0.69 ± 0.07	1.8 ± 0.2	0.9 ± 0.6	0.20	0.54	0.037
	EPIC-GAN [45]	$\textbf{0.3} \pm \textbf{0.1}$	1.6 ± 0.2	0.4 ± 0.2	1.01 ± 0.07	-	-
	PET generator	0.42 ± 0.10	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.35} \pm \textbf{0.08}$	0.04	0.55	0.03
	PET generator (Ideal)	$\textbf{0.36} \pm \textbf{0.08}$	$\textbf{0.34} \pm \textbf{0.09}$	0.47 ± 0.13	0.07	0.55	0.03
	OmniLearn	$\textbf{0.38} \pm \textbf{0.08}$	$\textbf{0.33} \pm \textbf{0.07}$	$\textbf{0.33}\pm\textbf{0.09}$	0.02	0.55	0.03
	OmniLearn (Ideal)	$\textbf{0.33} \pm \textbf{0.06}$	$\textbf{0.29} \pm \textbf{0.08}$	$\textbf{0.30} \pm \textbf{0.07}$	0.02	0.55	0.03
	FPCD 52	0.52 ± 0.07	$\textbf{0.27} \pm \textbf{0.06}$	0.38 ± 0.11	0.08	0.49	0.02
Light Quark	FPCD 1 [52]	0.59 ± 0.08	0.36 ± 0.08	0.50 ± 0.08	0.09	0.48	0.02
	MP-GAN [44]	0.6 ± 0.2	4.9 ± 0.5	0.7 ± 0.4	0.35	0.50	0.026
	EPIC-GAN [45]	0.5 ± 0.1	4.0 ± 0.4	0.8 ± 0.4	0.43 ± 0.03	-	-
	PET generator	0.39 ± 0.12	0.35 ± 0.06	$\textbf{0.24} \pm \textbf{0.10}$	0.03	0.54	0.02
	PET generator (Ideal)	0.31 ± 0.08	0.38 ± 0.10	0.23 ± 0.07	0.03	0.53	0.02
	OmniLearn	$\textbf{0.24} \pm \textbf{0.03}$	0.32 ± 0.07	$\textbf{0.24} \pm \textbf{0.08}$	0.02	0.54	0.02
	OmniLearn (Ideal)	0.31 ± 0.08	$\textbf{0.30} \pm \textbf{0.09}$	$\textbf{0.26} \pm \textbf{0.08}$	0.01	0.54	0.02
	FPCD 52	0.51 ± 0.07	0.41 ± 0.12	1.25 ± 0.19	0.17	0.58	0.05
Top Quark	FPCD 1 [52]	1.22 ± 0.09	0.46 ± 0.10	2.66 ± 0.26	0.56	0.57	0.05
	MP-GAN [44]	0.6 ± 0.2	2.3 ± 0.3	2 ± 1	0.37	0.57	0.071
	EPIC-GAN [45]	0.5 ± 0.1	2.1 ± 0.1	1.7 ± 0.3	0.31 ± 0.037	-	
	PET generator	0.44 ± 0.03	$\textbf{0.29} \pm \textbf{0.07}$	$\textbf{1.09} \pm \textbf{0.23}$	0.07	0.58	0.05
	PET generator (Ideal)	$\textbf{0.41} \pm \textbf{0.07}$	$\textbf{0.34} \pm \textbf{0.08}$	1.22 ± 0.23	0.07	0.58	0.05
	OMNILEARN	0.43 ± 0.06	$\textbf{0.30} \pm \textbf{0.07}$	1.31 ± 0.18	0.04	0.58	0.05
	OmniLearn (Ideal)	$\textbf{0.36} \pm \textbf{0.05}$	0.41 ± 0.08	$\textbf{1.02} \pm \textbf{0.20}$	0.03	0.58	0.05
	FPCD 52	0.26 ± 0.03	0.39 ± 0.08	0.15 ± 0.02	-	0.56	0.02
W Boson	FPCD 1 [52]	0.94 ± 0.06	0.42 ± 0.09	0.35 ± 0.03	-	0.56	0.02
	PET generator	$\textbf{0.17} \pm \textbf{0.04}$	$\textbf{0.26} \pm \textbf{0.05}$	0.11 ± 0.02	-	0.56	0.02
	PET generator (Ideal)	0.15 ± 0.02	$\textbf{0.31} \pm \textbf{0.07}$	0.12 ± 0.03	-	0.57	0.02
	OMNILEARN	$\textbf{0.19} \pm \textbf{0.03}$	$\textbf{0.27} \pm \textbf{0.07}$	0.10 ± 0.02	-	0.57	0.02
	OmniLearn (Ideal)	$\textbf{0.16} \pm \textbf{0.06}$	$\textbf{0.28} \pm \textbf{0.04}$	$\textbf{0.10} \pm \textbf{0.02}$	-	0.57	0.02
	FPCD [52]	$\textbf{0.21}\pm\textbf{0.04}$	0.40 ± 0.13	0.18 ± 0.03	-	0.56	0.02
Z Boson	FPCD 1 [52]	0.99 ± 0.05	0.35 ± 0.06	0.49 ± 0.03	-	0.56	0.02
	PET generator	0.22 ± 0.04	$\textbf{0.32} \pm \textbf{0.07}$	0.20 ± 0.04	-	0.57	0.02
	PET generator (Ideal)	$\textbf{0.18} \pm \textbf{0.10}$		$\textbf{0.14} \pm \textbf{0.02}$	-	0.56	0.02
	OmniLearn	$\textbf{0.19} \pm \textbf{0.07}$	$\textbf{0.32} \pm \textbf{0.09}$	0.12 ± 0.03	-	0.57	0.02
	OmniLearn (Ideal)	0.22 ± 0.05	$\textbf{0.27} \pm \textbf{0.06}$	$\textbf{0.13} \pm \textbf{0.02}$	-	0.57	0.02

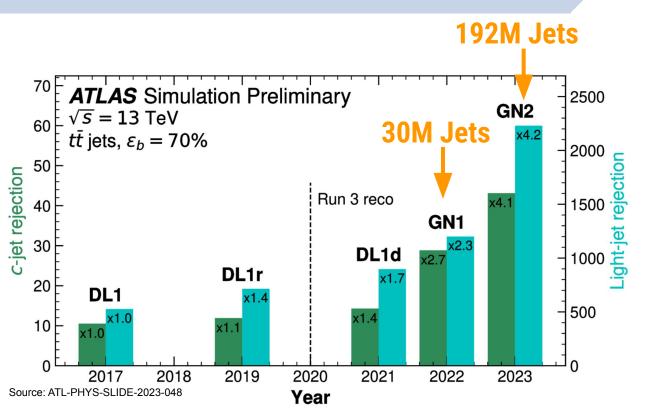
BERKELEY LAB Evaluation datasets: 6



16

Application Highlight

The Challenge



Pushing classification performance requires lots of data!

18

Evaluation datasets: 7

- **OmniLearn** is trained on cheap Delphes simulations. Can we fine-tune to Run 2 **ATLAS** Full simulation + Reconstruction?
- Matches SOTA with **10%** of the data
- Improves on SOTA if all events are used

	AUC	Acc	$1/\epsilon_B$	
			$\epsilon_S = 0.5$	$\epsilon_S = 0.8$
ResNet 50	0.885	0.803	21.4	5.13
EFN	0.901	0.819	26.6	6.12
hlDNN	0.938	0.863	51.5	10.5
DNN	0.942	0.868	67.7	12.0
PFN	0.954	0.882	108.0	15.9
ParticleNet	0.961	0.894	153.7	20.4
PET classifier (4M)	0.959	0.890	146.5	19.4
OmniLearn (4M)	0.961	0.894	172.1	20.8
PET classifier (40M)	0.964	0.898	201.4	23.6
OmniLearn (40M)	0.965	0.899	207.30	24.10

Unfolding

What we measure

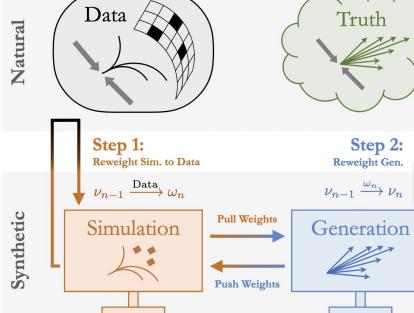
What we want

100000000

mmmmm

OmniFold

Detector-level



Particle-level

2-step iterative process

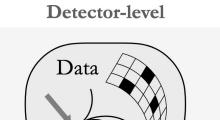
- Step 1: Reweight simulations to look like data
- Step 2: Convert learned weights into functions of particle level objects

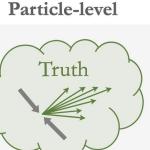
Learn a reweighting function between data and simulation

Source: Andreassen et al. PRL 124, 182001 (2020)

Natural

OmniFold





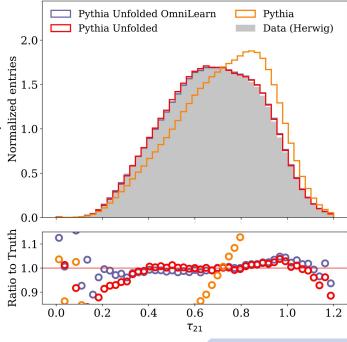


2-step iterative process

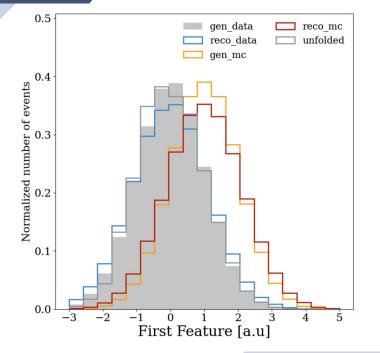
- Step 1: Reweight simulations to look like data
- Step 2: Convert learned weights into functions of particle level objects
 Classification!

Unbinned Unfolding using the OmniFold workflow. More **precise** than traditional unfolding and more **efficient** than previous ML models. Ex: H1 trained thousands of networks

Metric	MultiFold	UniFold	IBU		OmniFold	
				DeepSets	PET classifier	OmniLearn
Jet mass	3.80	8.82	9.31	2.77	$2.8{\pm}0.9$	$2.6{\pm}0.8$
Ν	0.89	1.46	1.51	0.33	$0.50{\pm}0.15$	$0.34{\pm}0.1$
Jet Width	0.09	0.15	0.11	0.10	$0.09{\pm}0.02$	$0.07{\pm}0.01$
$\log ho$	0.37	0.59	0.71	0.35	$0.23{\pm}0.07$	$0.14{\pm}0.03$
$ au_{21}$	0.26	1.11	1.10	0.53	$0.13{\pm}0.03$	$0.05{\pm}0.01$
z_g	0.15	0.59	0.37	0.68	$0.19{\pm}0.03$	$0.21{\pm}0.04$



OmniFold



OmniFold is also now available on pip:

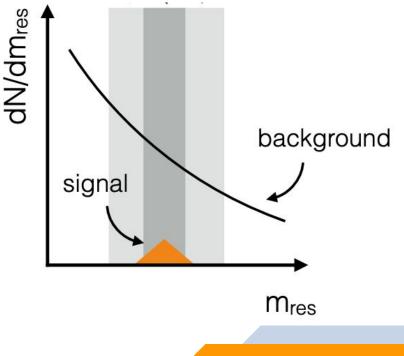
- pip install omnifold
- GitHub repository: <u>https://github.com/ViniciusMikuni/omn</u> <u>ifold</u>
- **RooUnfold** implementation coming soon!

Let's now unfold!

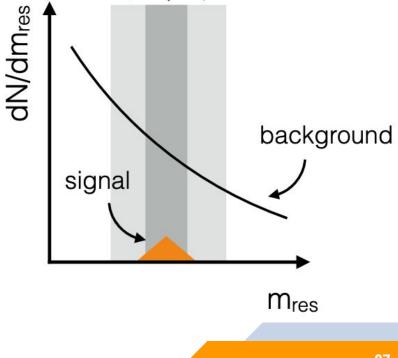
omnifold.Unfold()

Bump-hunting using ML:

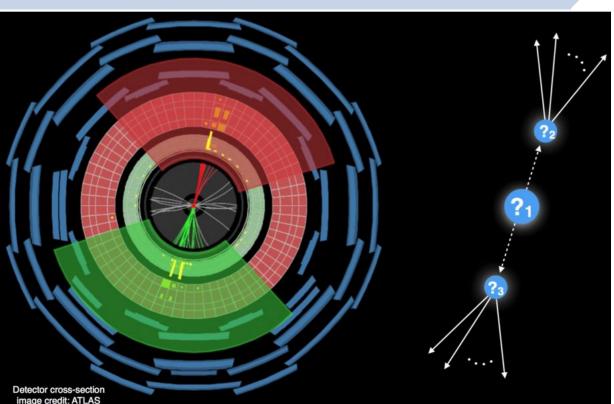
- Use the background in the sideband to estimate the background in the signal region
- Compare the estimated background with the data



Bump-hunting using ML: Generative Model Classifier



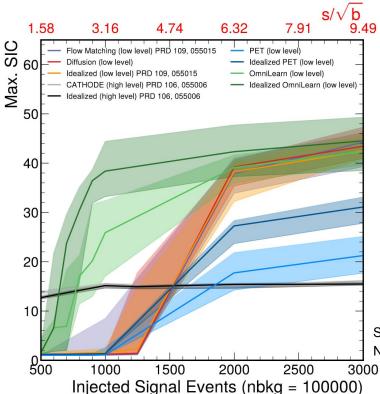
LHCO dataset



LHCO R&D dataset

Resonant **dijet** final state: A->B(qq)C(qq) with m_A, m_B , m_C = 3.5, 0.5, 0.1 TeV

Anomaly Detection



Generate the full dijet system: 2*279*3

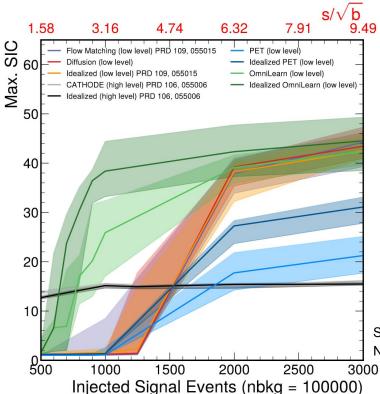
 1674 numbers to generate
 Classify data from background

 SIC = Significance Improvement Curve

 (TPR/sqrt(FPR) vs TPR) "By how much can I improve the significance of a particular signal given an initial significance."

See also: E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni, B. Nachman, and D. Shih, Phys. Rev. D 109, 055015

Anomaly Detection



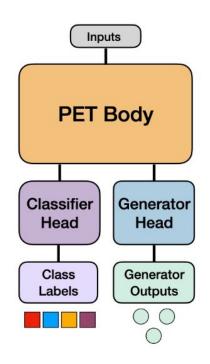
Generate the full dijet system: 2*279*3 = **1674** numbers to generate **Classify** data from background Previous results were limited by the amount of data in the SR: Only sensitive to NP when S/B > 3% ~ 4₀ **OmniLearn** founds the NP with **S/B = 0.7%** ~ 2*o*

See also: E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni, B. Nachman, and D. Shih, Phys. Rev. D 109, 055015

Conclusion

- OmniLearn: learn a general representation of jets
- Evaluation across 9 different downstream datasets
- Evaluate the performance on jet tagging, jet generation, unfolding, and anomaly detection
- OmniLearn improves upon SOTA or/and converges quicker than models trained from scratch
- Magnify the statistical power of the data: Not only Big Data benefits from AI
- Try it out yourself:

https://github.com/ViniciusMikuni/OmniLearn/ and check out the paper: arXiv:2404.16091



BERKELEY LAB

THANKS!

Any questions?

Backup

Language inspired models

- Data are tokenized
- Unsupervised and general pre-training
- Big models often required

OmniLearn

- Data are continuous
- HEP has one of the best simulators across all sciences: supervised pre-training
 Medium models that can fit on

standard GPUs are still useful

Not all datasets contain the same information:

- Let the model learn with and without some features
- Feature Dropout: With fixed probability, set some of the input features to 0

$$f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}$$

$$f_{5}, f_{6}, f_{7}, f_{8}$$

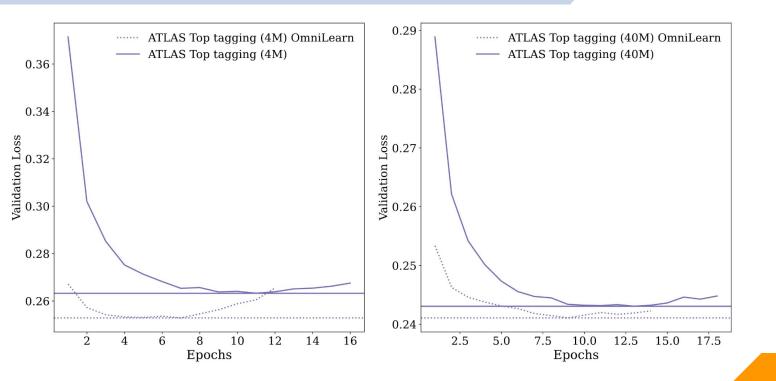
$$p = 0.9$$

$$0,0,0,0$$

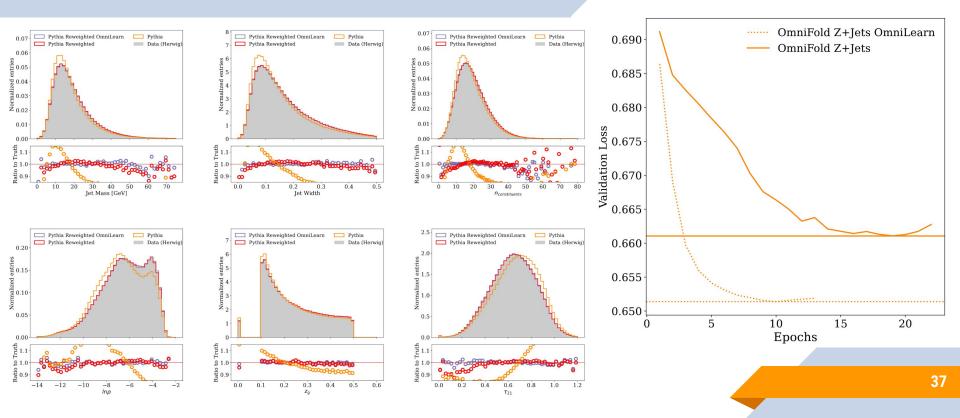
$$p = 0.1$$

More details at: https://arxiv.org/abs/2404.16091

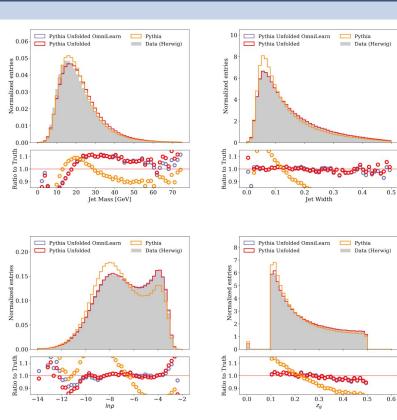
ATLAS Loss Curves

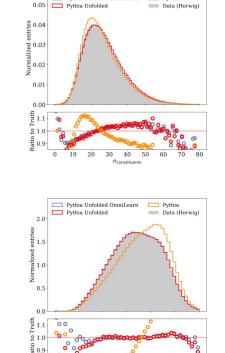


OmniLearn for reweighting



OmniLearn for Unfolding





τ21

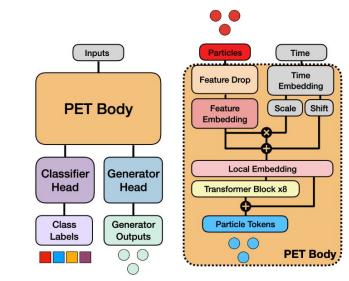
0.0 0.2 0.4 0.6 0.8 1.0 1.2

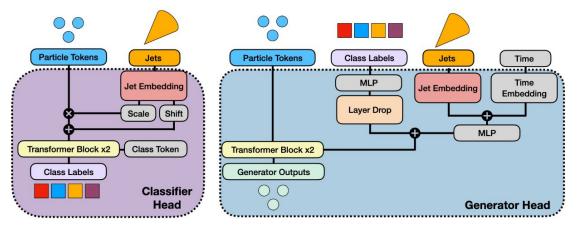
Pythia Unfolded OmniLearn

Pythia

38

PET

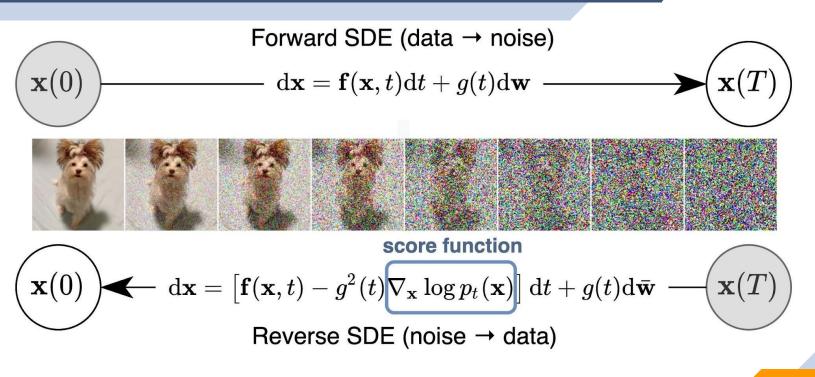




Train one model that learns to classify and generate jets

• Combine both local and global information using local edges and a transformer: **P**oint-**E**dge **T**ransformer

Diffusion Generative Models



$$egin{split} \mathcal{L} &= \mathcal{L}_{ ext{class}} + \mathcal{L}_{ ext{gen}} + \mathcal{L}_{ ext{class smear}} \ &= ext{CE}(y, y_{ ext{pred}}) + \left\| \mathbf{v} - \mathbf{v}_{ ext{pred}}
ight\|^2 + lpha^2 ext{CE}(y, \hat{y}_{ ext{pred}}) \end{split}$$

Straightforward loss function:

- Cross entropy for each class
- Perturbed data prediction from the **diffusion loss**
- Classification over perturbed inputs: data augmentation!

Diffusion models are the go to for data generation

- Simple training: take data
 x, perturb with a Gaussian of mean μ and std σ
- $\mathbf{x}' = \boldsymbol{\mu}^* \mathbf{x} + \boldsymbol{\sigma}^* \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathbf{N}(0, 1)$
- Ask the network to predict the noise injected
- $\mathbf{L} = ||\mathbf{D}(\mathbf{x}') \boldsymbol{\varepsilon}||^2$

