

Learning Powerful Jet Representations via Self-Supervision

Qibin Liu, Shudong Wang, Congqiao Li, Huilin Qu

ML4Jets 2024, LPNHE, Paris

7 November, 2024

Introduction

Machine Learning has been extensively used for Jets

In recent years...

Figure Credit: Víctor's talk

Self-supervised Learning

Learn from data directly?

- Training with no label required
 - Could learn from data directly and efficiently!
 - Relying less on MC, has the potential to better control uncertainty!
- Extract physics behind jets
 - Encourage algorithms to learn physics, rather than obsessed with minor details
 - Parton shower, hadronization, detector effects...
- Learn comprehensive jet representations suitable for various applications
 - Jet tagging, generation, reconstruction, anomaly detection...
 - Prospect: an approach to construct Foundation Models
- Self-supervised learning on jets
 - <u>JetCLR</u>, <u>MPM</u>, <u>OmniJet-α</u> ...

Architectures of Self-supervised Learning

There's more than one way...

- Joint-Embedding Architecture (Contrastive)
 - Minimize/maximize distances between representations of similar/dissimilar jets
 - SimCLR, JetCLR, AnomalyCLR, DarkCLR, RS3L
- Generative Architecture
 - Directly generate partial or full jets
 - MPM, OmniJet-α, MPMv2
- Joint-Embedding Predictive Architecture
 - Complete the representation of jets
 - <u>J-JEPA</u> (Jet-based Joint-Embedding Predictive Architecture)
 - Our approach, Particle Joint-Embedding Predictive Architecture (P-JEPA), inspired by <u>I-JEPA</u>
 - Could directly train on data
 - No discrete tokenization needed
 - Take full inputs, not only kinematics

Figure Credit: 2301.08243

Bring the Concept to Life

Implementation of the P-JEPA network

P-JEPA

7/11/2024

P-JEPA

7/11/2024

Particle Masking

Defining Context and Target for the Training

- Jets are consist of particles
 - Own features: kinematics, charge, PID, track info
 - Correlation between each other: angular distance, invariant mass...
- Masking sets the task for training
 - Random masking of 30% 50% of particles in a jet
 - Remaining particles provide "context" information for prediction

 Learning jet representations through predicting masked particles' representations

Context Encoder and Predictor

Encode Context Into Latent Space and Predict the Representation of Masked Particles Based on It

ParticleTransformer as backbone

- Predictor is narrower and shallower than encoders
 - Predict masked particles' representations using context and auxiliary info (mask token)
- Encoder and predictor are trained simultaneously

	Context Encoder	Predictor
Embed Dims	(512, 512, 512)	192
Pair Embed Dims	(64, 64, 64)	/
Num Heads	8	6
Num Blocks	16	4
Num Class Blocks	2	1

Target Encoder and Loss

Encode All Particles Into Latent Space and Compare with the Predicted Representation

- Context Encoder and Target Encoder share the same architecture
 - Weights of Target Encoder are updated via an exponential moving average (EMA) of the Context Encoder's weights

Loss = Particle Loss + Aggregated Loss + PID Loss

Does it work?

Experiments and Preliminary Results

Pre-training and Transfer Learning

General knowledge goes a long way

- Performance evaluated with pre-training + transfer learning pipeline
- Foundation P-JEPA model pre-trained on "data"
 - Full JetClass training dataset (100M jets), but not using labels
- Transfer learning to specific task
 - Different downstream models share the same target encoder (jet representation)

Application: Jet Tagging

- Transfer learning for jet tagging
 - 10-class jet classification on JetClass

FineTune:

Encoder allowed **slightly updating** when tagging task is trained

Freeze:

Encoder **fixed** when jet tagging task is trained

FromScratch:

Identical network architecture but training started with **randomly initialized weights**

Application: Jet Tagging

- Transfer learning for jet tagging
 - 10-class jet classification on JetClass

 Pre-training + transfer learning gives a significant performance boost with very limited number of labeled samples (as low as 100 jet/class)!

Benefit from jet representation learned via self-supervised learning

Application: Jet Tagging

- Transfer learning for jet tagging
 - 10-class jet classification on JetClass

- Test the effectiveness of pre-trained jet representations on anomaly detection
 - Model independent search for new physics signals
 - Share same framework of AD study in Sophon, originated from CWoLa (classification without labels)
 - CWoLa: allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)

can discover $W' \rightarrow W\phi \rightarrow WWW$ signals

- Sophon (Signature Oriented Pre-training for Heavy-resonance ObservatioN)
 - A model pre-trained on the comprehensive <u>JetClass-II</u> dataset (188 classes) with supervision
 - Use the Sophon model by performing transfer learning or constructing discriminants from selected output scores

Figure Credit

shudong.wang@cern.ch

• **Sophon** (Signature Oriented Pre-training for Heavy-resonance ObservatioN)

Sophon (Signature Oriented Pre-training for Heavy-resonance ObservatioN)

Using the output of P-JEPA target encoder as input to train the AD classifier

Summary

- Proposed the P-JEPA network for self-supervised learning on jets
- Promising performance showed on downstream jet tagging and anomaly detection tasks
- Main take away:
 - Effective jet representations can be learned from unlabeled dataset!

Outlook

- Using novel & performant algorithm as backbone (e.g. L-GATr)
- P-JEPA as a Foundation Model (more downstream tasks to be tested)
- Uncertainty-free or calibration-free jet tagging (ultimate goal though still long way to go)

Figure modified from @Srinivas Rao

shudong.wang@cern.ch