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Introduction

Machine Learning has been extensively used for Jets
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https://indico.cern.ch/event/1386125/contributions/6139656/
https://arxiv.org/abs/2211.00454
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2405.14806

Self-supervised Learning

Learn from data directly?

Training with no label required
= Could learn from data directly and efficiently!

= Relying less on MC, has the potential to better control uncertainty!

Extract physics behind jets

= Encourage algorithms to learn physics, rather than obsessed with
minor details

= Parton shower, hadronization, detector effects...

Learn comprehensive jet representations suitable for
various applications
= Jet tagging, generation, reconstruction, anomaly detection...

= Prospect: an approach to construct Foundation Models

Self-supervised learning on jets
» JetCLR, MPM, Omnilet-a ...
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https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618

Architectures of Self-supervised Learning

There's more than one way...

» Joint-Embedding Architecture (Contrastive) ox poeneee - ouAs,)

= Minimize/maximize distances between representations of

x-encoder y-encoder
similar/dissimilar jets g
= SIimCLR, JetCLR, AnomalyCLR, DarkCLR, RS3L é) é)
= Generative Architecture
= Directly generate partial or full jets @_) dec;der T D(i’y)
= MPM, Omnilet-a, MPMv2 o :
= Joint-Embedding Predictive Architecture é @

= Complete the representation of jets
= J-JEPA (Jet-based Joint-Embedding Predictive Architecture)

D(5y,sy)

= Our approach, Particle Joint-Embedding Predictive Architecture (P-JEPA), @ predimr IR

o
inspired by |-JEPA . P enmoder

= Could directly train on data

= No discrete tokenization needed é é

= Take full inputs, not only kinematics
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https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2108.04253
https://arxiv.org/pdf/2301.04660
https://arxiv.org/abs/2312.03067
https://arxiv.org/abs/2403.07066v1
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/pdf/2409.12589
https://indico.cern.ch/event/1386125/contributions/6083379/
https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/2301.08243

Bring the Concept to Life

Implementation of the P-JEPA network
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P-JEPA

Target

2t08 Used for downstream tasks

Encoder
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Particle Masking

Defining Context and Target for the Training

 Jets are consist of particles
= Own features: kinematics, charge, PID, track info

= Correlation between each other: angular distance, invariant mass...

* Masking sets the task for training

= Random masking of 30% - 50% of particlesin a jet

= Remaining particles provide “context” information for prediction

* Learning jet representations through predicting masked
particles’ representations



Context Encoder and Predictor

Encode Context Into Latent Space and Predict the Representation of Masked Particles Based on It

= ParticleTransformer as backbone _
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Target Encoder and Loss

Encode All Particles Into Latent Space and Compare with the Predicted Representation

= Context Encoder and Target Encoder share the same architecture

= Weights of Target Encoder are updated via an exponential moving average (EMA) of the Context Encoder’s weights
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Does it work?

Experiments and Preliminary Results
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Pre-training and Transfer Learning

General knowledge goes a long way

= Performance evaluated with pre-training + transfer learning pipeline

= Foundation P-JEPA model pre-trained on “data”

= Full JetClass training dataset (100M jets), but not using labels

= Transfer learning to specific task

» Different downstream models share the same target encoder (jet representation)

s A - Task-specific sample » Tagging

il Target O -

Encoder N o) - _
e | O/E"if"f\'-ﬁ’: D | - Anomaly Detection
o Nl = . ] Encoder S )
'L = - —_— IAgg egated Loss {E*ﬂ‘-ﬁ ﬂ J
s 5 I - + 1 = More...
- — [ PID Loss [q’»" 'ﬁ?@b l}l‘_
Pre-train on “data” Transfer learning on MC
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Application: Jet Tagging
= Transfer learning for jet tagging

= 10-class jet classification on JetClass
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Application: Jet Tagging
= Transfer learning for jet tagging

= 10-class jet classification on JetClass

—— sPre-training + transfer learning gives a significant
+  Original ParT performance boost with very limited number of
I FineTune labeled samples (as low as 100 jet/class)!

> Benefit from jet representation learned via

Freeze : :
self-supervised learning

—+— FromScratch
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Application: Jet Tagging
= Transfer learning for jet tagging

= 10-class jet classification on JetClass

B ——— - 4
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Application: Anomaly Detection

» Test the effectiveness of pre-trained jet representations on anomaly detection

* Model independent search for new physics signals

= Share same framework of AD study in Sophon, originated from CWoLa (classification without labels)

= CWola: allow to detect anomalies purely from data

= train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)

7/11/2024
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https://arxiv.org/abs/2405.12972
https://link.springer.com/article/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803

Application: Anomaly Detection

» Sophon (Signature Oriented Pre-training for Heavy-resonance ObservatioN)

= A model pre-trained on the comprehensive JetClass-Il dataset (288 classes) with supervision

= Use the Sophon model by performing transfer learning or
constructing discriminants from selected output scores

(a) Pre-training

QCD jets
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O O O
O O ;
I : ; ® :
O O o Constructing
Transfer learning ‘ discriminants . .
| Figure Credit
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https://huggingface.co/datasets/jet-universe/jetclass2
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972

Application: Anomaly Detection

» Sophon (Signature Oriented Pre-training for Heavy-resonance ObservatioN)
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PRL, 121 (2018) 24, 241803
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"If signal events reach this
point, with initial Z=g,
then we have already
discovered the signal
without needing to make
a cut”
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
https://arxiv.org/abs/2405.12972

Application: Anomaly Detection

» Sophon (Signature Oriented Pre-training for Heavy-resonance ObservatioN)
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https://arxiv.org/abs/2405.12972

Application: Anomaly Detection
» Using the output of P-JEPA target encoder as input to train the AD classifier
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Summary

* Proposed the P-JEPA network for self-supervised learning on jets

* Promising performance showed on downstream jet tagging and anomaly
detection tasks

* Main take away:

= Effective jet representations can be learned from unlabeled dataset!
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Outlook

= Using novel & performant algorithm as backbone (e.g. L-GATr)
= P-JEPA as a Foundation Model (more downstream tasks to be tested)

= Uncertainty-free or calibration-free jet tagging (ultimate goal though still long way to go)
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https://medium.com/@raosrinivas2580/supervised-versus-unsupervised-learning-8ef2b9411b81

