Point-Cloud based Diffusion Model on Hadronic Showers

Erik Buhmann¹, Thorsten Buss¹, Frank Gaede², Gregor Kasieczka¹, Anatolii Korol², William Korcari¹, Katja Krüger², Peter McKeown², **Martina Mozzanica^{1*}**, Lorenzo Valente¹

¹ University of Hamburg, UHH ² Deutsches Elektronen-Synchrotron, DESY

Nov. 7th, 2024

*martina.mozzanica@uni-hamburg.de

SPONSORED BY THE

ML4Jets 2024

CaloClouds II [1]: Fast & accurate point clouds based generative model —> applied only to EM showers

[1] CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation E. Buhmann et al: arxiv: 2309.05704

• CaloClouds II [1]: Fast & accurate point clouds based generative model -> applied only to EM showers

[1] CaloClouds II: Ultra-Fast Geometry-Independent Highly-**Granular Calorimeter Simulation** E. Buhmann et al: arxiv: 2309.05704

Hadronic shower

• CaloClouds II [1]: Fast & accurate point clouds based generative model -> applied only to EM showers

[1] CaloClouds II: Ultra-Fast Geometry-Independent Highly-**Granular Calorimeter Simulation** E. Buhmann et al: arxiv: 2309.05704

Dealing with 10-90 GeV π ⁺ showers

two components: hadronic and electromagnetic

Hadron showers have **much larger**:

- **spatial extension** -> larger interaction length than radiation length
- **lateral dispersion** -> large transverse energy transfers in nuclear reactions

 CaloClouds II [1]: Fast & accurate point clouds based generative model —> applied only to EM showers

[1] CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation E. Buhmann et al: arxiv: 2309.05704

Hadronic cascades are much more complex than em cascades!

Dealing with 10-90 GeV π+ showers

two components: hadronic and electromagnetic

Hadron showers have much larger:

- spatial extension -> larger interaction length than radiation length
- lateral dispersion -> large transverse energy transfers in nuclear reactions

Hadronic shower

ILD calorimeter

- International Large Detector (ILD) concept for the International Linear Collider (ILC)
- High-Granularity calorimeters:
- ECAL: Si-W 5mm x 5mm 30 layers
- HCAL: Sci-Fe 30mm x 30mm 48 layers

High granularity \longrightarrow Need for high fidelity simulation

ILD calorimeter

- International Large Detector (ILD) concept for the International Linear Collider (ILC)
- High-Granularity calorimeters:
 - ECAL: Si-W 5mm x 5mm 30 layers
 - HCAL: Sci-Fe 30mm x 30mm 48 layers

EM shower as **3D** image

Multiple points per cell & cell-geometry independence

High granularity \longrightarrow Need for high fidelity simulation

EM shower as point cloud

Generative models for calorimeter showers usually applied to fixed geometries -> more economically represented as **point clouds**

Showers as Point Clouds and Preprocessing

- higher granularity than cell hits
- ~3x fewer points than full Geant4 steps for hadronic showers

Photon Pion+ Note Shower type **Only EM** EM + Hadronic All GEANT4 steps 40 000 40 000 **Initial input of GEANT4** 2.5 cm 0.3 cm Defines the granularity 6 0 0 0 13 000 Input/Output of CaloClouds Calculation of physics observables Hits in calorimeter 1 500 4 000

High granular cell size

Clustered GEANT4 steps

Score-based continuous-time diffusion [2]

Continuous Time:

- continuum of distributions that evolve over time
- This process is modeled by a prescribed stochastic differential equation (SDE)

Scored-based:

- Score-matching: process of modelling the gradient of the log probability density function (=score function)
- Langevin dynamics is an iterative process that can draw samples from a distribution using only its score function

[2] Score-based Continuous-time Discrete Diffusion Models Haoran Sun et al: arxiv: 2211.16750

To compute the reverse SDE, we need to estimate the score function:

Calo Clouds II [3] architecture based on [4]

- input: 4d point cloud ${\color{black}\bullet}$

[4] Elucidating the Design Space of **Diffusion-Based Generative Models** T. Karras et al: arxiv: 2206.00364

Calo Clouds II [3] architecture based on [4]

- input: 4d point cloud \bullet
- <u>conditioning</u>: incident energy (E), number of points (N) and points per layer (NperL) lacksquare

[4] Elucidating the Design Space of **Diffusion-Based Generative Models** T. Karras et al: arxiv: 2206.00364

11

Attention Mechanism in the CaloClouds II architecture

Attention mechanisms [6] allows modelling of dependencies without regard to their distance in the input or output sequences

Self Attention based architecture

[6] Attention is all you need A.Vaswani et al: arXiv: <u>1706.03762</u>

Attention Mechanism in the CaloClouds II architecture

Attention mechanisms [6] allows modelling of dependencies without regard to their distance in the input or output sequences

Transformer encoder [6]

[6] Attention is all you need A.Vaswani et al: arXiv: <u>1706.03762</u>

dim feedforward = 512

Attention Mechanism in the CaloClouds II architecture

Attention mechanisms [6] allows modelling of dependencies without regard to their distance in the input or output sequences

Transformer encoder [6]

[6] Attention is all you need A.Vaswani et al: arXiv: <u>1706.03762</u>

Diffusion Layers

Geant4 Simulation

HCAL

10-90 GeV π+ showers

ECAL

CC II with transformer

15

Results 10-90 GeV π+ showers

- All evaluations with point cloud showers projected to regular cell grid (5,78,5)
- 10 000 showers

Summary

- Dealing with hadronic showers is a more complicated task than EM showers \bullet
- Clustered Geant4 steps allow for a cell-geometry-independent model
- Attention mechanism is a valid solution -> it considers interactions among points
- Ongoing work

