

DIFI DIPARTIMENTO **DI FISICA**

Accelerating Graph-Based Tracking accepted to to so miles with

Symbolic Regression

F. di Bello, E. Gross, C. Schiavi, N. Soybelman

ML4Jets, 06.11.2024

Motivation

- Tracking data is crucial for trigger decisions
- New ML methods improve tracking but are slow
- Implementing advanced models on FPGAs is complex
- Faster execution mean higher event handling rate
- Can we accelerate these models effectively?

Symbolic Regression on FPGAs for Fast Machine Learning Inference arXiv: 2305.04099

Ho Fung Tsoi^{1*}, Adrian Alan Pol², Vladimir Loncar^{3,4}, Ekaterina Govorkova³, Miles Cranmer^{2,5}, Sridhara Dasu¹, Peter Elmer², Philip Harris³, Isobel Ojalvo², and Maurizio Pierini⁶

- Approximate MLP with symbolic expression
- Used for jet classification
- Easy to implement on FPGA and fast inference

Can be generalized to more complex problems

Dataset

- Events: Single track, $p_T > 20$ GeV
- **Background:** Pile-up $\mu = 25$, detector noise (LHC Run 3)
- Detector: Simplified cylindrical, matching ATLAS ID radii
- Smearing: ϕ -, *z*-smearing based on ATLAS Pixel and SCT (no *r*-smearing)
- Hit selection: Preselected within $0.1 \times 0.1 \eta \phi$ wedge, ± 5 mm around PV, fully contains track

GNN with Symbolic Regression

Hit properties Hidden rep. Updated hidden rep.

- Inspired by object condensation (2002.03605)
- Loss function: Clusters signal hits, and maps noise to origin
- Architecture: 3MLPs; replaceable with symbolic expressions, preserving graph structure
- **PySR** for Symbolic Regression
- Retrain after each replacement to maintain performance

Condensation space

Seperation in condensation space

- Performance decreases with each step
- Good performance for SR1 and SR2, major performance loss in SR3
- No retraining possible after last replacement

Postprocessing

1. Clustering

2. Triplet construction

3. Track fitting

1. Clustering

- 1. Radius cut around origin
- 2. MeanShift clustering to isolate track hits

Compare signal efficiency and background rejection

	GNN	SR1	SR2	SR3
r cut	0.05	0.2	0.3	0.4
bandwidth	0.7	0.7	0.6	0.7
ε_s cluster	96%	95%	93%	86%
r_b cluster	94%	94%	93%	71%

2. Triplet construction

- 1. Get all combinations of 3 hits
- 2. Fit line and circle to obtain p_T and z_0
- 3. Fill 2D histogram in $p_T z_0$
- 4. Select triplets in window around maximum

	GNN	SR1	SR2	SR3
r cut	0.05	0.2	0.3	0.4
bandwidth	0.7	0.7	0.6	0.7
ε_s cluster	96%	95%	93%	86%
r_b cluster	94%	94%	93%	71%
ε_s triplets	95%	94%	91%	82%
r_b triplets	99%	98%	98%	90%

5. Keep hits contained in selected triplets

2. Triplet construction

- 1. Get all combinations of 3 hits
- 2. Fit line and circle to obtain p_T and z_0
- 3. Fill 2D histogram in $p_T z_0$
- 4. Select triplets in window around maximum
- 5. Keep hits contained in selected triplets

9

	GNN	SR1	SR2	SR3
r cut	0.05	0.2	0.3	0.4
bandwidth	0.7	0.7	0.6	0.7
ε_s cluster	96%	95%	93%	86%
r_b cluster	94%	94%	93%	71%
ε_s triplets	95%	94%	91%	82%
r_b triplets	99%	98%	98%	90%

3. Track fitting

- If only 1 hit per layer, perform final fits for p_T and z_0
- Else, iteratively remove hits based on the χ^2 of fit

Residuals

- Truth fit refers to fit using only signal hits
- Very good performance for SR1 and SR2
- Failed circle fits give nearly 0 p_T leading to the bump at 1 in SR3

One more thing ...

- Good perfomance
- Few step postprocessing

- Reduce goal to plain bkg removal
- 1k triplets for SR3 after clustering (~13k without filter)
- Even 70% bkg removal would help a lot!

Test on more realistic dataset ...

Did you find them all?

