

Parnassus An Automated Approach to Accurate, Precise, and Fast Detector Simulation and Reconstruction

Etienne Dreyer, Eilam Gross, Dmitrii Kobylianskii, Vinicius Mikuni, Benjamin Nachman, Nathalie Soybelman

ML4Jets 2024

Motivation

Problem to solve

truth particles

Goals

Marginal distributions

Feature 2

Feature

Existing approach: Delphes 3

Public parametrized simulation

WEIZMANN

OF SCIENCE

INSTITUTE

- Commonly used for research
- Very fast

מרוז הצמו רמדע

- Shows good agreement of jet kinematics and resolution
- Not used by ATLAS/CMS
- Not very suitable for substructure and individual particle properties

ML-based approach

ML-based approach: Our journey

<u>Accepted in PRD</u>

CMS 2011A Simulation QCD, Single jets

Charged + Neutral

 p_T, η, ϕ

Flow matching

arXiv:2406.01620 Accepted in PRL

CMS 2011A Simulation QCD, TTbar, H4lep **Full event**

Charged + Neutral

 $p_T, \eta, \phi, \vec{v}, \mathsf{PID}$

Flow matching

This talk

Single-Jet (<u>arXiv:2406.01620</u>)

- CMS 2011A Simulation dataset
- Full CMS simulation

WEIZMANN

OF SCIENCE

INSTITUTE

- QCD dijets events, jets clustered with anti-kt 0.5
 - $p_T > 375, |\eta| < 1.9$
- 200 particles max

p_T^{\min} - p_T^{\max} [GeV]	Type	Training	Testing
470 - 600	Out-of-distribution		\checkmark
600 - 800	Out-of-distribution		\checkmark
800 - 1000	In-distribution	\checkmark	\checkmark
1000 - 1400	In-distribution	\checkmark	\checkmark
1400 - 1800	Out-of-distribution		\checkmark
1800 - ∞	Out-of-distribution		\checkmark

Delphes dataset for comparison was simulated by us with addition of CMS PileUp Minimum bias events.

Results: Single Jets

WEIZMANN

OF SCIENCE

INSTITUTE

Very good agreement with CMS Pflow

Jet features

Full event

- CMS Open Data, Simulation Datasets 2011
- Full event
- $p_T > 1 \text{ GeV}, |\eta| < 2.7 \text{ cut}$ on PFOs and truth particles
- 3M events for training

Dataset	Training	Testing
<u>QCD 470-600 GeV</u>	\checkmark	\checkmark
TTbar	\checkmark	\checkmark
<u>Higgs → 4 leptons</u>		\checkmark
QCD 1000-1400 GeV		\checkmark

Image is for illustrative purposes, datasets were extracted by us from CMS Open Data.

Full event: model description

- Conditional Flow Matching model
- Separate ResNet CFM network for (cardinality, E_x^{miss} , E_y^{miss} , H_T) prediction
- Cross-Attention Diffusion
 Transformer architecture for particle properties

- Maximum 400 particles
- p_T, η, ϕ, \vec{v} , PID prediction

t

Event features

Truth particles

 \vec{x}_t

$$p_t(x \mid z) = \mathcal{N} \left(x \mid tx_1, (t\sigma - t + 1)^2 \right)$$
$$u_t(x \mid z) = \frac{x_1 - (1 - \sigma)x}{1 - (1 - \sigma)t}$$

$$\mathscr{L}(\theta) = \mathbb{E}_{t,q(x_1),p_t(x|x_1)} \| v_{\theta}(x,t) - u_t(x|x_1) \|^2$$

11

Results: Higgs \rightarrow 4 leptons

Cardinality

מכוז ויצמו למדע

WEIZMANN

INSTITUTE OF SCIENCE

Results: Higgs \rightarrow 4 leptons

Residuals

מכוז ויצמו למדע

WEIZMANN

INSTITUTE OF SCIENCE

- Based on Hungarian Matching between PFOs and Truth particles with ΔR metric
- Neutral PFOs are set to zero vertex

Results: Higgs \rightarrow 4 leptons, TTbar, QCD

Jet substructure

תרוז ויצתו לתדע

WEIZMANN

INSTITUTE OF SCIENCE

QCD 470-600 GeV

TTbar

QCD 1000-1400 GeV

Higgs → 4 leptons

Summary

Conclusions

- CFM is a very powerful tool for PFOs generation
- Model is able to generalize to different processes and phase space regions
- Due to lack of truth pile-up particles model learned it implicitly
- Parnassus outperforms Delphes and is very close to CMS PFOs, especially in substructure and per-particle features

Future work directions

- Implement configurable and user-friendly interface with documentation
- Work with experiments (ATLAS, CMS) to produce and validate specific models
- Facilitate the sharing of such models to the broad physics community

https://github.com/parnassus-hep/cms-flow

