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Motivation

@ In NLP and LLM, a recent proposal of only using 2 or 3 discrete states in the weights matrix has garnered significant attention. It is
only considered for classification in fast triggers in HEP.

@ Transformer-based LLMs: large size, high energy consumption BitNet: 1-bit Transformer
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Weight Quantization: Wy, = sign (W — (W)) = {1, 1}, Wjsg = max (—1,min (1,r0und (%))) ,B=(W]) = {1,0,-1}.

Pre-Activation Quantization: ¥ = max (—Qb,min (Qh,round (%))) ,

Quantized outputs during forward propagation: y = W¥.

Rescaled outputs during back propagation: y = WX x é—z

7 = max(|x]) .

We employ the 1.58-bit weights and choose an 8-bit input quantization, i.e. b = 8 and Q;, = 128.

Daohan W
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BITNET (2310.11453)

@ The first 1-bit Transformer architecture for LLMs, aiming to scale efficiently in terms of both memory and computation.

@ Employs low-precision binary weights and quantized activations, while maintaining high precision for the optimizer states and
gradients during training.
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Model Implementation

Binarizing other architectures also holds significant potential. We explore this potential by
applying 1.58b-BITNET to benchmark the performance of various HEP applications.

Full Precision

1 5l ! 1 *o Ixag—1xao;—1xa2+1Xa3
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Ensure that the gradient calculation in back propagation is stable and accurate

Per formance Timing Energy Cost

o Q %
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HEP Applications
Benchmark models with 1.58b-BITNET implemented:

Linear Layer = BitLinear Layer

Classification Regression

P-DAT PE— 1.58b-BITNET B SMEFTNet

|

Generative Modeling

CaloINN

Daohan Wang (HEPHY BitHEP
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Classification Application: P-DAT

Particle-Dual Attention Transformer (2307.04723)

M. He & D. Wang

Quark/Gluon Discrimination
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Dual Attention Mechanism

A(Q,K, V) = Concat(heady, ..., headyy, )
K:
L Y

Vi

Q;(x)T A(Q;,K;, V;) = softmax
where head; = softmax [% + Ul] v;

Particle Attention Map PxP Particle Feature Attention Map CxC

Transpose

Particle interaction matrix Uy : o Channel interaction matrix Up:
Straightforward ratios of

{Ey, Py LTS LE, B, &g, AR, PID}

where A7, Ag and AR correspond to
the transverse momentum weighted
sum of the Ay, Ap, AR of all the

constituent particles inside the input

jet, respectively. Here A, A¢ and AR
refer to the distances in the 77 — ¢ space

between each constituent particle and
- the input jet.

AR = \/(yu —yp)2+ (b — ¢p)2,

kp =min(prq, P1,5)8

Transpose

z=min(pre, P1h)/ (PT,0 + PTb)

~«+H+|TL

m? = (Ea + Ep)? — ||pa + pplI%,

P

Apr = P10 — P10

Daohan W.
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P-DAT Model Architecture

@ Input features: log E, log pr, :TT]’ ELI' Ay Ap, AR, PID of leading 100 particles.

@ The particle attention module (P x P attention map) and the channel attention module (C x C attention map) are stacked while
maintaining a consistent feature dimension of N = 64 and they can complement each other.

@ Particle - Dual Attention Transformer: 2 Feature Extractor (1 EdgeConv + 3 Conv2D + 1 AvgPool) + 2 Particle Attention modules + 2
Channel Attention modules + 1D CNN + MLP.

Particle Channel Particle Channel
Interaction Interaction Interaction Interaction
Embedding Embedding Embedding Embedding
PXPXN, NKN

Feature
Jet Particle Channel Particle Channel : :
Eﬁ‘(’ff“” Self Attention Self Attention Self Attention Self Attention rain/Validation/Test
(k=20) [( Chunk Wise
PxI Px128 Px6t
Average Delete —
Pooling Memory
Output —
x*

0, x1, 22, x3, x4

Chunk Loading Strategy
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-BIT Model Architecture

@ Replacing all the linear layers with BitLinear layers in the four attention modules of the P-DAT model (60% of the total parameters).

@ All hyperparameters are identical to the non-binarized version.

Particle Channel Particle Channel
Interaction Interaction Interaction Interaction
Embedding Embedding Embedding Embedding
PXPXN, NKN

Feature
Extractor

Feature
ractor
(k=20)

Jet
Dataset

Px128

—mﬂ

Px6t
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Performance

Accuracy AUC Rejs09, Rejzg9, Parameters FLOPs
ResNeXt-50 0.821 0.9060 30.9 80.8 1.46M -
P-CNN 0.827 0.9002 34.7 91.0 354k 15.5M
PEN - 09005 34.7+04 - 86.1k 4.62M
ParticleNet-Lite 0.835 0.9079 37.1 94.5 26k -
ParticleNet 0.840 09116 39.8+02 98.6+1.3 370k 540M
ABCNet 0.840 09126 426+04 1184=+15 230k -
SPCT 0.815 0.8910 31.6+03 93.0+1.2 7k 2.4M
PCT 0.841 0.9140 432407 118.0+£22 193.3k 266M
LorentzNet 0.844 09156 424404 1102+1.3 224k -
ParT 0.849 09203 479405 1295+0.9 2.13M 260M
P-DAT 0.839 09092 392+06 95.1+1.3 498k 144M
P-DAT-BIT 0.834 09040 350+03 833+1.2 498k 144M

(HEPHY Vienna)

BitHEP
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Calibration Curves

Calibration Curves
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Regression Application: SMEFTNet

IRC-safe and Rotation-Equivariant Graph Neural Network (2401.10323)

S. Chatterjee, S. S. Cruz, R. Schéfbeck & D. Schwarz

Decay Plane Angle Regression

han Wang (HEPHY Vienna)
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Motivation

@ The linear term in the polynomial describes the SM-SMEFT interference is the unambiguous harbinger of dimension-6 SMEFT effects.

@ A dedicated angular analysis can extract SMEFT sensitivity where the orientation of the decay planes of the W or Z boson provides
crucial sensitivity because it can resolve the amplitudes’ helicity configuration which is altered in the SMEFT.

@ Equivariant SMEFTNet focuses on the interference contribution to the differential cross-section from the operators
Oy = el W;;"W{,p W:,V and Oy, = ¢lik WI’;" WépW;,V, with O and Oy, induce CP-even and CP-odd modifications of the gauge boson

self-interactions.

@ A dedicated multivariate analysis of the fully leptonic decay mode extracts SMEFT sensitivity from global event kinematics.

@ SMEFTNet exploits the SMEFT sensitivity from the hadronic final states D = {mglobal izptih Np ) Nei’ ents

Daohan Wang ] / a BitHEP
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Motivation

decay

@ pp — W(— qq)Z(— 1) MG5+Pythia+Delphes Events with Hr > 300 GeV are retained.  anti-kr algorithm with R=0.8
@ The decay plane angle changes as the W jet rotates. To study the hadronic final states of W boson, SMEFTNet is constructed to be
equivariant to azimuthal rotations of the boosted jet’s constituents around the jet axis, maintaining SO(2) symmetry.

@ The particle features of each event inherently encode information about the decay plane for each event, hidden within the radiation
patterns mapped to the variable-length constituent vector.

SMEFTNet’s goal is to serve as a surrogate model to provide an optimal observable for detecting SMEFT effects from LHC collision data.
Our focus, however, is on testing BITNET’s performance in regression tasks, so we limit our study to the regression of the decay plane angle. J

Daohan Wang (HEPHY £ BitHEP
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Sketch of the Network Conflguratlon

(0)
hw
Xp hEO) A
=t
=
Xglobal

@ Input features for 1=0: Four-vectors p, of the particles. h = @i, hY = AR;

i
. O] P1,j
@ Message passing function: ’ mj

= Sen e Particle j € N (i) of a particle i with AR;j < AR.

= w fm (pi, p;j) with w
@ We demand SO(2) equivariance: Sy, (h ,h) = (hy +Ag,h) :
» hY = Tient) W™D g0 (hgl),h](.) nh hg,}) Invariance

] P
I+1 in) (N@) () (L (1) p (1) () ()
+1) . ! f¢ ( ; S\

o, HEjeN() ) N g W) Equivariance
@ After L iterations, the global pooling is applied to sum over all the constituents with the energy-weighting. The results along with the
global features Xgjobal are fed into a final MLP.

in
> emq’,f

Daohan Wang (HEPHY £ BitHEP
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Loss Function

@ Regression Target: Decay plane angle of the W boson’s parton-level decay products ¢}, decay
N;
@ Inputs: x; = {pr,i, ¢;, AR;};/, with AK8jet pr > 500 GeV.  80%/20% of WZ data as train/test dataset.

@ L=1Yyen,,sin (f (xj) = !Pj,decay) .

quarks, although switching the positions of the two partons alters the decay plane angle by 7, the underlying simulated

Since the simulated data lacks the information to distinguish constituents originating from up-type and down-type
data remains unchanged. Consequently, the sine function is specifically employed to speed up learning the periodicity. J

BitHEP
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2D Density and Scatter Plots

Regression Results with SMEFTNet Regression Results with SMEFTNet-BIT
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Generation Application: CaloINN

Normalizing Flows for High-Dimensional Detector Simulations (2312.09290)

F. Ernst, L. Favaro, C. Krause, T. Plehn & D. Shih

Fast Calorimeter Shower Simulations

Daohan Wang (HEPHY Vienna) BitHEP
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Motivation

by learning the underlying probability distribution of calorimeter showers from a reference dataset and then generating new samples based

Deep generative networks based on normalizing flow provide fast and accurate surrogates for simulations in high-dimensional phase spaces
on this learned distribution. J

CaloINN builds fast and accurate surrogate models for calorimeter shower simulation, using the technology of normalizing flows and VAEs.

Showers simulated with GEANT4 for different incident particles.
The detector volume is segmented into layers in the direction of the incoming particle.

Each layer is segmented along polar coordinates in radial (r) and angular («) bins.

A shower is given as the incident energy of the incoming particle and the energy depositions in each voxel.

Dataset 1: Calorimeter showers for central photons and charged pions with incident energy ranging from 256 MeV to 4.2 TeV.
Dataset 2 & 3: 100,000 positron showers with log-uniform incident energy ranging from 1 GeV to 1 TeV.

Daohan Wang (HEPHY £ BitHEP
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Normalizing Flows learn a change-of-coordinates efficiently.

“easy” base L “target”
distribution <~ bi ectlve. <~ distribution
transformation
7(z) p(x)

of (
p(x) = 7(f(x)) |det L2
- fdo fu-1°0° fo fi(x) density estimation, p(x)
\ £l frlooo il o fyl(z)  Sample generation X

Daohan Wang (HEPHY Vienna) BitHEP
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INN (Invertible Neural Network)

@ INN (coupling layer based normalizing flow) is applied for dataset 1 & 2 to sample ppodel (X) from pjagent ().

)

@ Following the methodology presented in 2312.09290, we train a binary classifier D(x) on the voxels and a binary
classifier trained on a set of high-level features, to distinguish GEANT4 showers from generated showers.

INN uses rational quadratic splines for dataset 1 and cubic splines for dataset 2 & 3.
@ Loss Function:

— 3G (x
L = — <10g pmadel(x))'Pd = - <108 plutent(Gﬂ(x)) + IOg ‘ %

@ The INN is trained on the full data, conditioned on the logarithm of the incident energies.

Low-level classifier: Phase space of the voxels in each layer
High-level classifier: (17);, Oy)ir Mir Eiy Etot / Eine

@ We use AUC (area under the calibration curve) to analyze the quality of the generative networks.

(©)

Daohan Wang (HEPHY BitHEP
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Classification Results

dataset setup AUC low-level AUC high-level
regular 0.619(2) 0.650(4)
dsl photon partial bitnet (10%) 0.646(2) 0.669(3)
full bitnet 0.884(2) 0.855(3)
regular 0.787(3) 0.735(2)
dsl pion partial bitnet (10%) 0.848(3) 0.787(2)
full bitnet 0.906(2) 0.900(2)

Table: Performance of regular and bitnet using the classifier metric of CALOCHALLENGE WRITEUP.
Uncertainties show the standard deviation over 10 random initializations and trainings of the classifier on the
same sample.

Daohan Wang (HEPHY Vienna) BitHEP
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Summary and Outlook

@ BITNET with ternary precision (weights +1, 0) performs excellently across various tasks in high-energy physics while
significantly reducing computational resources.

@ It has been successfully applied to practical tasks, including fast calorimeter simulations, quark/gluon discrimination
and decay plane angle regression.

v

A typical usecase at the LHC: the Trigger system

Collisions occur at 40 MHz, then we trigger with hardware down to 100 kHz and with software to a few kHz.
If we use NN, they need to be really fast!

Current state-of-the-art: put NNs directly on a chip: FPGA, but size is limited!

ML models can be compressed and converted into HLS projects using tools like hls4ml or conifer, leading to the
creation of custom firmware designs for FPGAs that enable high parallelism for low latency and high throughput.

@ Does a BitNet fits efficiently on an FPGA? If yes, we can use it to fit better NNs on the chip, allowing better triggers.

Daohan Wang (HEPHY BitHEP




