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Full Event

(Same) Event 
with No Pileup

TOTAL: Training Optimal Transport with 
Attention Learning

● The probability density 
is intractable, but we 
can approximate the 
density

● Realizations of the 
density are accessible

● Optimal transport over 
the space of inputs 
allows for 
approximation
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TOTAL: Training Optimal Transport with 
Attention Learning

● Wasserstein distance (WD): Finds the transport function that 
keeps hard scattering particles and removes those from 
simultaneous vertices

● Sliced WD to compensate for poor scaling of computational 
costs of calculating WD at high dimensions
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TOTAL: Training Optimal Transport with 
Attention Learning

● Scaled Mean Square Error 
of missing p

T
● Forces energy 

conservation between the 
pure and full samples
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TOTAL: Training Optimal Transport with 
Attention Learning

Transformer 
(ABCNet)

Assigns a pileup weight 
[0,1] to each particle per 
event to minimize the loss

Inputs: Particle kinematics 
(p

T
, η, φ, charge) + CHS 

weights

1. Calculate SWD as an integral over one-dimensional 
transport problems

2. Find the optimal coupling, which minimizes the cost 
function evaluated over one-dimensional, sorted random 
projections between paired events

Nathan Suri, 2024



12
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Transformer 
(ABCNet)

Assigns a pileup weight 
[0,1] to each particle per 
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TOTAL: Training Optimal Transport with 
Attention Learning

(arXiv:2211.02029)

+ Outperforms 
traditional and 
ML-based alternatives

+ Relies on global event 
descriptions

+ Robustly learns pileup 
characteristics as a 
transport function

- Requires direct 
matching of 
events

- Overall limited 
due to 
supervision
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TOTAL: Training Optimal Transport with 
Attention Learning

WOTANML Competitors

● Matching between truth 
and reco at particle 
level 
(MC correction)

TOTAL

● Matching between 
pileup events and same 
event without pileup 
vertices (data-driven*)

● Matching between 
ensembles of events 
with different relative 
pileup densities 
(fully data-driven)

Pure
1
2
3
…

Full
1
2
3
…

Truth

Reco

Truth

Reco

Truth

Reco
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*Such supervision is not physically realizable



“
How can we improve TOTAL’s 

flexibility?
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“
Reduce supervision!
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Physics Example: High pT Jets
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𝜙

▷ PUMML Dataset: 
https://zenodo.org/records/26520
34

▷ Process: q-qbar 
light-quark-initiated jets from the 
from the decay of a Higgs-like scalar

▷ Pileup was generated by 
overlaying soft QCD on top of 
signal

Nathan Suri, 2024
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Physics Example: High pT Jets
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𝜙

▷ PUMML Dataset: 
https://zenodo.org/records/2652
034

▷ Datasets
○ μ = 140, Δm: Set pileup 

vertex count, varied scalar 
mass

○ Δμ, m = 500 GeV: Varied 
pileup vertex (PV) count, set 
scalar mass
■ PV: 130-141
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“
What happens if we do not require 

direct matching?
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*Each result averaged over 5 trainings
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1. TOTAL only works for 
matched inputs 

2. Shuffled TOTAL has 
expectedly poor performance 
since ordering no longer exists 
after shuffling events



“
How can we mitigate the 

information loss of not matching 
events?
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TOTAL

Batch
[event: {particles}]
[event: {particles}]

…

WOTAN

Batch
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[event: {particles}]

…

Batch
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[event: {particles}]

…
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[event ensemble: {particles}]
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Key Takeaways
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WOTAN is generalizable to any denoising 
problem that matches the outline discussed 
in this talk

03

WOTAN is a completely data-driven pileup 
mitigation technique01

WOTAN outperforms conventional pileup 
mitigation strategies without requiring 
unphysical supervision 

02
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Stay tuned! 
Final results to be released soon 
arXiv 2411.XXXXX
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Backup Slides
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Charged Hadron Subtraction

▷ Benefits
○ Very effective at 

removing charged 
pileup due to track 
information

▷ Drawbacks
○ Inapplicable to neutral 

pileup
▷ (arXiv:2012.06271)
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Earth Mover’s Distance = W1
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▷ Assumption: Total volume of the 
holes = total volume of the dirt 
piles

▷ Piles as the probability density 
function of P and holes as the 
probability density function of Q

▷ Per unit transportation cost:

▷ Transportation Plan:
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Earth Mover’s Distance = W1
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TOTAL: Training Optimal Transport with 
Attention Learning

Modification for jet-based dataset (PUMML)
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*Initial training ranges


