

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

圓 \approx **ARR** ᅘ <u> ឧ ទ</u> \bullet

OmniJet-α and beyond: foundation model updates

ML4jets 2024-11-07

Anna Hallin

anna.hallin@uni-hamburg.de

Foundation models

- Foundation models **pre-train** on a certain (large) dataset for a certain task, **fine-tune** to perform on a different dataset or a different task
- Foundation models may be expensive to train, but once pre-trained, downstream tasks require **less resources**
	- **■** Human resources
	- Compute resources
- Can leverage the pretraining to **boost performance on small datasets**
- **EXECT:** Sharing pre-trained models can provide others with access to resources that are normally not accessible for them (data, computing resources)

OmniJet-α

OmniJet-α: the first cross-task foundation model for particle physics

[Mach. Learn.: Sci. Technol. 5 035031 \(2024\) \(](https://iopscience.iop.org/article/10.1088/2632-2153/ad66ad)2403.05618); With Joschka Birk and Gregor Kasieczka

- OmniJet-α is the first foundation model for particle physics that is able to **task-switch**:
	- unsupervised **full jet generation**
	- supervised **classification**
- Uses a transformer for **generative pretraining** based on the GPT-1 architecture [1] with next-token-prediction as training target: $p(x_j | x_{j-1}, ..., x_0)$
- **Idea:** as the model learns to generate jets, it learns aspects of the data that are useful for the downstream task.

[1] Radford *et al*, "Improving language understanding by generative pre-training," (2018)

Tokenization for generative tasks

- **Language models** need to turn text into numbers (which is what our models can work with), use tokenization: text \rightarrow sequence of integer tokens
- In physics, we already have numbers, but our **architecture** or **training goals** can force us to **tokenize**:
	- Cross-entropy loss powerful, but need discrete numbers = tokens
- Example of a particle jet:
	- $\text{let} = \{p_1, p_2, ..., p_N\}$
	- $= p_i = \{p_T, \eta, \phi, \text{PID}, \text{charge}, \dots\} \rightarrow \text{token}_i$
	- Jets as **sequences of integers**:

 $\{<$ start token >, token₁, token₂, ..., token_N, $<$ stop token >}

Vector Quantized Variational autoencoder

The VQ-VAE [2,3] learns an **embedding space** of discrete tokens

- Unconditional tokens: tokenize one constituent at a time, **1:1 correspondence**
- Conditional tokens: sees all constituents, adapts the tokens \rightarrow one token can **cover multiple parts** of feature space

[2] van den Oord et al, *Neural Discrete Representation Learning*. arXiv 1711.00937 [3] Huh et al, *Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks*. arXiv 2305.08842

Backbone

- **Transformer backbone** takes tokens as input, outputs to task specific head. <start token>, token 1, …, token n, <stop token>
- **Multihead attention block** receives a causal mask that prevents attention to future tokens and a padding mask to allow jets with different number of constituents
- **Task specific heads**
	- Generation linear layer
	- Classification linear layer, ReLU, sum, linear layer, softmax

Dataset

- JetClass [4]: 10 classes of simulated jets with **10M jets of each type**
- For pretraining: use **10M** *q/g* jets and **10M** *t → bqq'* jets.
- **No class labels** are passed to the model during pretraining.
- Use **constituent features** p_T , $η^{rel}$, $φ^{rel}$ (rel = relative to the jet axis), no jet-level information, no PID etc

[4] http://dx.doi.org/10.5281/zenodo.6619767

Generation

During generation, the model generates tokens **autoregressively**:

- Model has learned $p(x_j | x_{j-1}, ..., x_1,$ < start token >)
- Model recieves <**start token**> and generates until it generates a <**stop token**> or the maximum sequence length is reached

Generally **good agreement** to truth distribution

Constituent p_T spectrum tail has few events \rightarrow the limited codebook size shows up as bumps

 $\frac{9}{2}$ 10⁻³ $rac{2}{2}$ 1.5 $E_{2.0}$ $\frac{5}{2}$ 10⁻⁵ ž 1.0 1.0 0.5 0.0 $0.0¹$ 400 600 800 -0.5 0.0 0.5 20 40 60 80 100 200 $\overline{0}$ 120 Particle p_T [GeV] Particle η^{rel} Number of constituents

1.50

1.25 $\frac{6}{9}$ 1.00

 $\frac{1}{2}$ 0.75

 $\frac{5}{2}$ 0.50

 0.25 $0.00 +$

 10^{1}

 10^{-1}

 10^{-}

Transfer learning

Task switching: classify quark/gluon vs hadronic top jets

The next-token-prediction head is changed to a classification head. Test three approaches:

- **From scratch:** all weights are initialized from scratch, no pre-training is used
- Fine-tuning: load weights of the pre-trained generative model
	- **EXEC** regular **fine-tuning**: all weigths can change
	- **EXP** backbone fixed: weights of the pre-trained transformer backbone are held fixed

Transfer learning results

- Significantly better result when using pre-training
- Full fine-tuning slightly better than backbone fixed

OmniJet-α extensions

Conditional generation

- Requires labeled data
- Include class token when training: <start token>, <class token>, token 1, …, token n, <stop token>
- The model automatically learns to associate certain jets with certain classes
- Train on all 10 classes of JetClass
- Generate specific jet types by feeding the model the start token and class token
- Generally good agreement

Pre-training on real data, transfer learning to different jet type

With Oz Amram, Luca Anzalone, Joschka Birk, Darius A. Faroughy, Gregor Kasieczka, Michael Krämer, Ian Pang, Humberto Reyes-Gonzalez and David Shih 2411.XXXXX

- See <u>[Ian's talk on Monday](https://indico.cern.ch/event/1386125/contributions/6185289/)</u>!
- OmniJet-α pre-trains on unlabelled data, which we have a lot of
- Can pre-train on real data, fine-tune on simulations
- Aspen Open Jets
	- a dataset is derived from CMS Open Data 2016
	- contains 170M unlabelled jets
- We show that we can pre-train on AOJ, and then fine-tune on JetClass top jets, to generate more top jets

- Nov 4, 2024, 3:10 PM
- Ω 20m
- **9** LPNHE, Paris, France

Speaker

Lan Pang

Using OmniJet-α with non-jet data: shower generation

With Joschka Birk, Gregor Kasieczka, Martina Mozzanica and Henning Rose 2411.XXXXX

- See [Henning's talk on Tuesday](https://indico.cern.ch/event/1386125/contributions/6139665/)!
- The model only ever sees integers:
	- not dependent on being fed physics information
	- not restricted to jet physics
- A first step for building a foundation model for all particle physics must be to put tasks from different subdomains in the same computational framework
- Calorimeter shower generation:
	- **•** Tokenize detector hits using the VQ-VAE
	- **•** Train to generate point-cloud showers
	- Model learns how "long" a shower is, no need to condition on number of hits

Nov 5, 2024, 4:00 PM

 Ω 20m

9 LPNHE, Paris, France

Speaker

A Henning Rose

Outlook

Conclusion and outlook

- OmniJet-α is the **first cross-task foundation model for particle physics**, capable of both **generating jets** and **classifying** them.
- Pre-training offers **significant improvements** in downstream task
- Current expansions:
	- Conditional jet generation
	- **Pre-training on real data: Aspen Open Jets**
	- **EXP** Shower generation: a first step towards a multi-subdomain foundation model
	- More to come...

OmniJet-α references: [Paper](https://iopscience.iop.org/article/10.1088/2632-2153/ad66ad) | [Code](https://github.com/uhh-pd-ml/omnijet_alpha/)

Backup

Binning

- Sub-optimal **coverage**
- **■** Vocab size becomes $\prod_{i \in features} n_{bins,i}$
	- Tokens \rightarrow Embedding: Linear (n_{tokens} , d_{embed})
	- **•** Embedding \rightarrow Tokens: Linear (d_{embed}, n_{tokens})
	- Example: 100 000 tokens with embedding dimension 128 \rightarrow 25.6M parameters

Binning vs VQ-VAE

- VQ-VAE adapts to the shape of the data
- Conditional tokenization covers more of the phase space

Tokenization results

Compared several approaches:

- Binning
- VQ-VAE
	- **■** Unconditional
	- Conditional
	- Different codebook sizes (vocab sizes)

We proceed with **conditional tokens** with codebook size **8192**.

Quantifying tokenization information loss in OmniJet-α

- **Train a multi-class classifier** on all 10 classes of JetClass (note: this is not a reconstructed vs truth test)
- Two types of classifiers are tested: **transformer** and **Deep sets**
- Train on original JetClass data to obtain an **upper limit**
- Accuracy starts **plateauing** at a codebook size of 8192

Generative results, single-jet type training

■ q/q jets $t \rightarrow bqq'$ jets

Comparison of generative capabilities, *t → bqq'*

- EPiC-FM [5]: flow matching, **no tokenization**
- Ratios compare OmniJet-α and EPiC-FM (kinematics version) to **their respective truths**
- **Both** models are **doing well**
- OmniJet- α has a slightly higher discrepancy in the tails, except for constituent *η* rel and number of constituents

[5] Birk et al, *Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information*. arXiv [2312.00123](https://arxiv.org/abs/2312.00123).

Anna Hallin | OmniJet-α and beyond | ML4jets 2024-11-07 24