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Motivation

▶ parton-level Monte Carlo event generation scales badly with number of particles
• increasing number of Feynman diagrams
• decreasing unweighting efficiency

▶ HL-LHC demands more simulated data
→ improve sampling efficiency

▶ Here: learn to sample efficiently with Continuous Normalizing Flows (CNFs)
▶ Note: results are preliminary, no publication yet
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Monte Carlo event generators

▶ full-featured simulation
▶ from high to low energy scales
▶ hard interaction of quarks & gluons via perturbation

theory
▶ sample 4-momenta according to differential cross

section
→ expensive, multimodal, narrow peaks, cuts

▶ factorize hard interaction from PDFs, parton shower,
hadronization, decays, electroweak corrections,
multiple interaction, …
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Sampling basics: importance sampling
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, 𝑥𝑖 ∼ 𝑔(𝑥)

▶ draw points from a proposal distribution
▶ points come with weights𝑤𝑖 =

𝑓(𝑥𝑖)
𝑔(𝑥𝑖)

▶ spread of weights is small if proposal is close to target

3



Sampling basics: importance sampling

0.0 0.2 0.4 0.6 0.8 1.0
𝑥

0.0

0.5

1.0

1.5

de
ns
ity

target 𝑓(𝑥)
proposal 𝑔(𝑥)

1

∫
[0,1]𝑑

𝑓(𝑥) d𝑥 ≈ 1
𝑁

𝑁
∑
𝑖=1

𝑓(𝑥𝑖)
𝑔(𝑥𝑖)

, 𝑥𝑖 ∼ 𝑔(𝑥)

▶ draw points from a proposal distribution
▶ points come with weights𝑤𝑖 =

𝑓(𝑥𝑖)
𝑔(𝑥𝑖)

▶ spread of weights is small if proposal is close to target

0.0 0.2 0.4 0.6 0.8 1.0
𝑥

0

1

2

de
ns
ity

1

multichannel: 𝑔(𝑥) =
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∑
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∑
𝑖
𝛼𝑖 = 1

▶ use mixture distribution for multimodal targets
▶ construct channels based on physics knowledge
▶ automatic channel weight optimization [Kleiss&Pittau

Comput.Phys.Commun. 83 (1994) 141-146]
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Normalizing Flows
base distribution
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▶ based on change-of-variable formula:

𝐱 = 𝑔(𝐳) ⇒ 𝑝𝐱(𝐱) = 𝑝𝐳(𝐳)
|||det(

𝜕𝑔(𝐳)
𝜕𝐳𝑇

)|||

−1

→ transform simple distribution into complex one

key properties
• invertible (bijective map)

• can evaluate probability density exactly

• parameterized by NNs→ train via loss minimization
▶ use for adaptive importance sampling
▶ replacement for VEGAS [Lepage (1978), JCP 27 (2)]
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Normalizing Flows

We can distinguish three kinds of normalizing flows:
▶ discrete flows (autoregressive, coupling)
▶ invertible residual networks
▶ continuous time flows (Neural ODEs)

Distinguishing feature: How the Jacobian is made tractable

5Chen et al. NeurIPS 2019



Discrete flow results: unweighted events for 𝑔𝑔 → 4𝑔
weight distribution
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▶ presented at ML4Jets 2021
▶ 1st application of NFs to HEP phase space sampling
▶ HAAG phase space mapping [van Hameren&Papadopoulos,

Eur.Phys.J.C25:563-574,2002]

▶ 8 dimensions, multichannel with 3 channels
▶ remap each channel with one normalizing flow
▶ non-trivial phase space cuts

unw. efficiency gain over VEGAS

𝑡 → 𝑒+𝜈𝑒𝑏 𝑒+𝑒− → 𝑡 ̄𝑡 𝑔𝑔 → 3𝑔 𝑔𝑔 → 4𝑔

1.7 2.0 2.3 1.5

6E. Bothmann, TJ, M. Knobbe, T. Schmale, S. Schumann: SciPost Phys. 8, 069 (2020)



Continuous normalizing flows – Neural ODE

reconsider change of variable formula:

𝐱 = 𝑔(𝐳) ⇒ 𝑝𝐱(𝐱) = 𝑝𝐳(𝐳)
|||det(

𝜕𝑔(𝐳)
𝜕𝐳𝑇

)|||

−1

now consider a transformation continuous in time:

d𝐱
d𝑡 = 𝑔(𝐱(𝑡), 𝑡) ⇒

𝜕 log𝑝𝐱(𝐱)
𝜕𝑡 = − tr (

d𝑔
d𝐱(𝑡))

p(
z(

t 1
))

0

1

t

z

p(
z(

t 0
))

▶ 𝑔 only needs to be Lipschitz continuous but not bijective→ use a neural network
▶ free-form Jacobian
▶ trace scales better than determinant

7Chen et al. NeurIPS 2018 © Grathwohl et al. ICLR 2019



Continuous normalizing flows – Neural ODE

We can calculate the log probability together with the flow trajectory by numerically solving the
ODE

d
d𝑡 [

𝑔(𝐱, 𝑡)
log𝑝𝑡(𝑔(𝐱, 𝑡))

] = [ 𝑣𝑡(𝑔(𝐱, 𝑡))
− div(𝑝𝑡(𝐱) 𝑣𝑡(𝐱))

]

given the initial conditions

[ 𝑔(𝐱, 0)
log𝑝0(𝑔(𝐱, 0))

] = [ 𝐳
𝑝𝐳(𝐳)

]

→ flow from base 𝑝0 = 𝑝𝑧 to 𝑝1(𝐱) by integrating over 𝑡 ∈ [0, 1]

given a sample 𝐱1, we can compute 𝑝1(𝐱1) by solving the ODE in reverse
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Training a CNF

▶ approximate the target vector field with NN 𝑣𝑡(𝐱; 𝜃)
▶ train by minimizing the KL divergence between the target

distribution and the generated distribution (equivalent to
training of discrete flows)

▶ gradients for backpropagation are available through the
adjoint ODE

▶ integrating the ODE requires many evaluation of the vector
field
→ slow training and sampling

discrete
flow

continuous
flow

9© Grathwohl et al. ICLR 2019



Simulation-free training (flowmatching)

Regression objective for the vector field:

ℒFM(𝜃) = 𝔼𝑡∼𝒰[0,1], 𝑥∼𝑝𝑡(𝑥)‖𝑣𝑡(𝑥; 𝜃) − 𝑢𝑡(𝑥)‖2

with target probability density path 𝑝𝑡(𝑥) generated by vector field 𝑢𝑡(𝑥)
→ intractable since we don’t know a valid choice for 𝑢𝑡(𝑥)

10Lipman et al. ICLR 2023



Simulation-free training (flowmatching)

Regression objective for the vector field:

ℒFM(𝜃) = 𝔼𝑡∼𝒰[0,1], 𝑥∼𝑝𝑡(𝑥)‖𝑣𝑡(𝑥; 𝜃) − 𝑢𝑡(𝑥)‖2

with target probability density path 𝑝𝑡(𝑥) generated by vector field 𝑢𝑡(𝑥)
→ intractable since we don’t know a valid choice for 𝑢𝑡(𝑥)

Conditional flowmatching objective:

ℒCFM(𝜃) = 𝔼𝑡∼𝒰[0,1], 𝑥1∼𝑞(𝑥1), 𝑥∼𝑝𝑡(𝑥|𝑥1)‖𝑣𝑡(𝑥; 𝜃) − 𝑢𝑡(𝑥|𝑥1)‖2

→ the gradients w.r.t. 𝜃 are the same as forℒFM!

Choose Gaussian probability paths:

𝑝𝑡(𝑥|𝑥1) = 𝒩(𝑥 | 𝑡𝑥1, (𝑡𝜎min − 𝑡 + 1)2 𝐼)
10Lipman et al. ICLR 2023 © Tong et al. TMLR 03/2024



Phase space parameterization: CHILI
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▶ simple yet efficient algorithm for phase space sampling
▶ single 𝑡-channel combined with any number of 𝑠 channel

decays
▶ used in the GPU event generator PEPPER [Bothmann et al.

arXiv:2311.06198]

▶ NF leads to narrower weight distributions
▶ diminishing gains whenmore jets are added

11Bothmann et al.: SciPost Phys. 15, 169 (2023)



Results: 𝑝𝑝 → 𝑍 + 4j single channel with PEPPER

▶ partonic channel 𝑑 ̄𝑑 → 𝑒+𝑒−𝑔𝑔𝑔𝑔
▶ 16 dimensions
▶ distribution features non-trivial

correlations
▶ factor 8 efficiency gain over VEGAS
▶ FM better than discrete flow
▶ high cut efficiency
▶ bootstrap training improves performance
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Results: 𝑝𝑝 → 𝑍 + 4j single channel with PEPPER
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NNLO integration with STRIPPER

▶ sector-improved residue subtraction scheme for higher order calc.
▶ collaboration with Rene Poncelet and Steffen Schumann
▶ developed python interface to C++ code
▶ select individual infrared limits in sectors where poles can be extracted and cancelled by

virtual corrections
→𝜎 integral becomes sum of sector integrals

Example:
𝑔𝑔 → 𝑡 ̄𝑡𝑔 single unresolved (NLO real contribution)

▶ example has 8 dimensions (+2 discrete inputs: sectors, polarizations)
▶ 2 sectors, 4 polarizations

13M. Czakon and D. Heymes: Nucl. Phys. B 890 (2014) 152–227



Results: 𝑔𝑔 → 𝑡 ̄𝑡𝑔with STRIPPER
▶ have to deal with negative weights (integrand is not positive definite)
▶ typically one adapts 𝑔(𝑥) to |d𝜎|
▶ found that stratification into positive/negative parts is better than learning |𝑓|
→ relies on flows being able to differentiate between pos/neg very efficiently

▶ sectors & polarizations sampled as discrete variables→ conditional flow
Integrator MC estimate pos. point fraction neg. point fraction

po
s.

VEGAS 1788.2 ± 1.9191 72.61% 27.38%
IFLOW 1791.0 ± 0.52629 95.61% 4.39%
flowmatching 1790.9 ± 0.4405 98.08% 1.92%

ne
g.

VEGAS −396.19 ± 0.83711 61.50% 38.49%
IFLOW −396.6 ± 0.17026 9.31% 90.69%
flowmatching −396.8 ± 0.14114 4.01% 95.99%

su
m

VEGAS 1392.01 ± 2.094
IFLOW 1394.4 ± 0.5532
flowmatching 1393.4 ± 0.4626

fu
ll
PS

VEGAS 1393.6 ± 2.6374 71.06% 28.93%
IFLOW 1393.4 ± 1.7923 80.86% 19.13%
flowmatching 1392.9 ± 1.8073 81.49% 18.51% 14



Results: 𝑔𝑔 → 𝑡 ̄𝑡𝑔with STRIPPER
pos. only
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Outlook

▶ investigate scaling behaviour→ go to 𝑍 + 5j
When to prefer continuous flow over discrete flow?

▶ condition flow on flavour combinations to sample hadronic interactions with a single model
▶ make best use of existing multichannel samplers (as base distribution or for generating

training data)
▶ evaluate performance for a full-featured NNLO calculation with STRIPPER
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Conclusions

▶ Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
▶ interesting relations to Optimal Transport theory
▶ training is efficient and scalable
▶ we find significantly improved MC variances and unweighting efficiencies for different HEP

examples
▶ continuous flow performs slightly better than discrete flow
▶ normalizing flows for higher order are a promising direction for future research

17



Conclusions

▶ Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
▶ interesting relations to Optimal Transport theory
▶ training is efficient and scalable
▶ we find significantly improved MC variances and unweighting efficiencies for different HEP

examples
▶ continuous flow performs slightly better than discrete flow
▶ normalizing flows for higher order are a promising direction for future research

Questions and suggestions are welcome!
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QCD cross-sections

𝑢 𝑔

𝑝 𝑝

Factorized cross-section:

𝜎 = ∑
𝑖,𝑗
∫

1

0
d𝑥1∫

1

0
d𝑥2 𝑓𝑖(𝑥1, 𝜇2𝐹) 𝑓𝑗(𝑥2, 𝜇2𝐹) 𝜎̂𝑝𝑖𝑝𝑗→{𝑝𝑓}(𝑥1, 𝑥2, 𝜇

2
𝐹)

→ separate perturbative & non-perturbative physics
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→ separate perturbative & non-perturbative physics

Partonic cross-section:

d𝜎̂𝑝𝑖𝑝𝑗→{𝑝𝑓}(𝑥1, 𝑥2, 𝜇
2
𝐹) =

1
2𝐸1𝐸2|𝑣1 − 𝑣2|

(∏
𝑓

d3𝑝𝑓
(2𝜋)3

1
2𝐸𝑓

)

× |ℳ(𝑝𝑖𝑝𝑗 → {𝑝𝑓})|2 (2𝜋)4 𝛿(4)(𝑝𝑖 + 𝑝𝑗 −∑𝑝𝑓)

→ can be calculated from first principles
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Unweighted event generation (rejection sampling)
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Goal
generate i.i.d. samples

▶ sample from proposal 𝑔(𝑥) (via inverse transform)
▶ determine weights𝑤(𝑥) = 𝑓(𝑥)

𝑔(𝑥)

▶ accept events with probability 𝑝accept(𝑥) =
𝑤(𝑥)
𝑤max

→ reduce sample size!
▶ unweighting efficiency: 𝜂 = ⟨𝑤⟩

𝑤max
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VEGAS algorithm
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▶ piecewise constant density over [0, 1)𝑑

▶ factorized: 𝑞(𝐱) = ∏𝑑
𝑖=1 𝑞𝑖(𝑥𝑖)

▶ adapt bin boundaries to minimize variance

21Lepage (1978), Journal of Computational Physics 27 (2)



VEGAS algorithm
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▶ piecewise linear mapping with uniform base distribution
▶ optimise a proposal by learning missing structure
▶ apply to each channel in a multichannel

21Lepage (1978), Journal of Computational Physics 27 (2)



VEGAS algorithm – limitations

target density VEGAS grid VEGAS density

1▶ factorised ansatz does not allow to learn correlations
→ phantom peaks

▶ bin boundaries are not well aligned with cuts
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VEGAS algorithm – limitations
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Toy example: VEGAS vs. normalizing flow

target

VEGAS

normalizing flow

→ replacing VEGAS with normalizing flows reduces the spread of weights 23



Discrete flow results: unweighted events for 𝑔𝑔 → 4𝑔
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24E. Bothmann, TJ, M. Knobbe, T. Schmale, S. Schumann: SciPost Phys. 8, 069 (2020)



Continuous normalizing flows – Neural ODE

The instantaneous change of variable is related to the continuity
equation well known in physics:

d
d𝑡𝑝𝑡(𝐱) + div(𝑝𝑡(𝐱) 𝑣𝑡(𝐱)) = 0

where 𝑣𝑡 is a time-dependent vector field and div = ∑𝑑
𝑖=1

𝜕
𝜕𝑥𝑖

→ probability density ‘flows’ like a fluid with velocity 𝑣𝑡

p(
z(

t 1
))

0

1

t

z

p(
z(

t 0
))

25© Grathwohl et al. ICLR 2019



Simulation-free training (flowmatching)

Regression objective for the vector field:

ℒFM(𝜃) = 𝔼𝑡∼𝒰[0,1], 𝑥∼𝑝𝑡(𝑥)‖𝑣𝑡(𝑥; 𝜃) − 𝑢𝑡(𝑥)‖2

with target probability density path 𝑝𝑡(𝑥) generated by vector field 𝑢𝑡(𝑥)
→ intractable since we don’t know a valid choice for 𝑢𝑡(𝑥)

Recall the continuity equation:

d
d𝑡𝑝𝑡(𝐱) + div(𝑝𝑡(𝐱) 𝑢𝑡(𝐱)) = 0

→ constructing 𝑝𝑡 or 𝑢𝑡 is equivalent

We can construct conditional probability paths with the correct marginals and their
corresponding vector fields!

26Lipman et al. ICLR 2023



Conditional probability paths

given data samples 𝑥1 ∼ 𝑞(𝑥1), construct 𝑝𝑡 as a mixture of simpler
probability paths:

𝑝𝑡(𝑥) = ∫𝑝𝑡(𝑥|𝑥1) 𝑞(𝑥1) d𝑥1

where the conditional probability path 𝑝𝑡(𝑥|𝑥1) satisfies

𝑝0(𝑥|𝑥1) = 𝑝(𝑥) simple base distribution
𝑝1(𝑥|𝑥1) = 𝒩(𝑥|𝑥1, 𝜎2𝐼) normal concentrated around 𝑥1

it is generated by a conditional vector field 𝑢𝑡(𝑥|𝑥1)which has the correct marginal to generate
𝑝𝑡(𝑥):

𝑢𝑡(𝑥) = ∫𝑢𝑡(𝑥|𝑥1)
𝑝𝑡(𝑥|𝑥1) 𝑞(𝑥1)

𝑝𝑡(𝑥)
d𝑥1

(proof using continuity equation)
27© Cambridge Machine Learning Group



Gaussian probability paths
consider Gaussian probability paths:

𝑝𝑡(𝑥|𝑥1) = 𝒩(𝑥 | 𝜇𝑡(𝑥), 𝜎𝑡(𝑥1)2 𝐼) ,

where

𝜇0(𝑥1) = 0 𝜇1(𝑥1) = 𝑥1
𝜎0(𝑥1) = 1 𝜎1(𝑥1) = 𝜎min

simplest flow is a linear interpolation between 𝑡 = 0 and 𝑡 = 1:

𝑝𝑡(𝑥|𝑥1) = 𝒩(𝑥 | 𝑡𝑥1, (𝑡𝜎min − 𝑡 + 1)2 𝐼)

→ OT displacement map between two Gaussians
this path is generated by the vector field

𝑢𝑡(𝑥|𝑥1) =
𝑥1 − (1 − 𝜎min)𝑥
1 − (1 − 𝜎min)𝑡

28© Tong et al. TMLR 03/2024


