Exploring Phase Space with Flow Matching ML4Jets 2024 Paris

Timo Janßen

Campus-Intitute Data Science, Georg-August-Universität Göttingen

with Fabian Sinz and Bernhard Schmitzer

5 November 2024

Motivation

- \triangleright parton-level Monte Carlo event generation scales badly with number of particles
	- increasing number of Feynman diagrams
	- decreasing unweighting efficiency
- ▶ HL-LHC demands more simulated data
	- \rightarrow improve sampling efficiency
- \triangleright Here: learn to sample efficiently with Continuous Normalizing Flows (CNFs)
- \triangleright Note: results are preliminary, no publication yet

Monte Carlo event generators

hard interaction

- \blacktriangleright full-featured simulation
- \blacktriangleright from high to low energy scales
- ▶ **hard interaction** of quarks & gluons via perturbation theory
- \triangleright sample 4-momenta according to differential cross section
	- \rightarrow expensive, multimodal, narrow peaks, cuts
- ▶ factorize hard interaction from PDFs, parton shower, hadronization, decays, electroweak corrections, multiple interaction, …

Sampling basics: importance sampling

$$
\left[\int_{[0,1]^d} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x) \right]
$$

 \triangleright draw points from a proposal distribution

► points come with weights
$$
w_i = \frac{f(x_i)}{g(x_i)}
$$

 \triangleright spread of weights is small if proposal is close to target

Sampling basics: importance sampling

$$
\int_{[0,1]^d} f(x) dx \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x)
$$

 \triangleright draw points from a proposal distribution

- ▶ points come with weights $w_i = \frac{f(x_i)}{g(x_i)}$ $g(x_i)$
- \triangleright spread of weights is small if proposal is close to target

$$
\boxed{\text{multichannel: } g(x) = \sum_{i}^{N_c} \alpha_i g_i(x), \quad \sum_{i}^{N_c} \alpha_i = 1}
$$

- \blacktriangleright use mixture distribution for multimodal targets
- construct channels based on physics knowledge
- automatic channel weight optimization [Kleiss&Pittau Comput.Phys.Commun. 83 (1994) 141-146]

Normalizing Flows

1

target distribution

×

z

flow

 χ

▶ based on change-of-variable formula:

$$
\mathbf{x} = g(\mathbf{z}) \Rightarrow p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^T} \right) \right|^{-1}
$$

 \rightarrow transform simple distribution into complex one

key properties

- invertible (bijective map)
- can evaluate probability density exactly
- parameterized by NNs \rightarrow train via loss minimization
- \triangleright use for adaptive importance sampling
- ▶ replacement for VEGAS [Lepage (1978), JCP **27** (2)]

Normalizing Flows

We can distinguish three kinds of normalizing flows:

- discrete flows (autoregressive, coupling)
- \blacktriangleright invertible residual networks
- ▶ continuous time flows (Neural ODEs)

Distinguishing feature: How the Jacobian is made tractable

(a) Det. Identities (Low Rank)

(b) Autoregressive (Lower Triangular)

(c) Coupling (Structured Sparsity)

(d) Unbiased Est. (Free-form)

Discrete flow results: unweighted events for $gg \rightarrow 4g$

weight distribution

- ▶ presented at ML4Jets 2021
- \triangleright 1st application of NFs to HEP phase space sampling
- **HAAG phase space mapping [van Hameren&Papadopoulos,** Eur.Phys.J.C25:563-574,2002]
- 8 dimensions, multichannel with 3 channels
- \triangleright remap each channel with one normalizing flow
- non-trivial phase space cuts

Continuous normalizing flows – Neural ODE

reconsider change of variable formula:

$$
\mathbf{x} = g(\mathbf{z}) \Rightarrow p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^T} \right) \right|^{-1}
$$

now consider a transformation continuous in time:

$$
\frac{dx}{dt} = g(x(t), t) \Rightarrow \frac{\partial \log p_x(x)}{\partial t} = -tr\left(\frac{dg}{dx(t)}\right)
$$

▶ g only needs to be Lipschitz continuous but not bijective \rightarrow use a neural network

- free-form Jacobian
- \blacktriangleright trace scales better than determinant

z

 $p(z(t_1))$

 $\overline{ }$

 $\mathbf{0}$

 $p(z(t_0))$

1

Continuous normalizing flows – Neural ODE

We can calculate the log probability together with the flow trajectory by numerically solving the ODE

$$
\frac{d}{dt} \begin{bmatrix} g(\mathbf{x}, t) \\ \log p_t(g(\mathbf{x}, t)) \end{bmatrix} = \begin{bmatrix} v_t(g(\mathbf{x}, t)) \\ -\operatorname{div}(p_t(\mathbf{x}) v_t(\mathbf{x})) \end{bmatrix}
$$

given the initial conditions

$$
\begin{bmatrix} g(\mathbf{x}, 0) \\ \log p_0(g(\mathbf{x}, 0)) \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ p_{\mathbf{z}}(\mathbf{z}) \end{bmatrix}
$$

 \rightarrow flow from base $p_0 = p_z$ to $p_1(\mathbf{x})$ by integrating over $t \in [0,1]$

given a sample \mathbf{x}_1 , we can compute $p_1(\mathbf{x}_1)$ by solving the ODE in reverse

 I

Training a CNF

- \blacktriangleright approximate the target vector field with NN $v_t(\mathbf{x};\theta)$
- train by minimizing the KL divergence between the target distribution and the generated distribution (equivalent to training of discrete flows)
- gradients for backpropagation are available through the adjoint ODE
- \triangleright integrating the ODE requires many evaluation of the vector field
	- \rightarrow slow training and sampling

Simulation-free training (flow matching)

Regression objective for the vector field:

$$
\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], x \sim p_t(x)} ||v_t(x;\theta) - u_t(x)||^2
$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Simulation-free training (flow matching)

Regression objective for the vector field:

$$
\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], x \sim p_t(x)} ||v_t(x;\theta) - u_t(x)||^2
$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Conditional flow matching objective:

$$
\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], x_1 \sim q(x_1), x \sim p_t(x|x_1)} \|v_t(x;\theta) - u_t(x|x_1)\|^2
$$

 \rightarrow the gradients w.r.t. θ are the same as for $\mathcal{L}_{\text{FM}}!$

Choose Gaussian probability paths:

$$
p_t(x|x_1) = \mathcal{N}(x \mid tx_1, \left(t\sigma_{\min} - t + 1\right)^2 I)
$$

Conditional Flow Matching

A AA A A

Phase space parameterization: CHILI

- simple yet efficient algorithm for phase space sampling
- single t -channel combined with any number of s channel decays
- used in the GPU event generator PEPPER [Bothmann et al. arXiv:2311.06198]
- \triangleright NF leads to narrower weight distributions
- \blacktriangleright diminishing gains when more jets are added

Results: $pp \rightarrow Z + 4j$ single channel with PEPPER

- ▶ partonic channel $d\bar{d} \rightarrow e^+e^- ggg$
- \blacktriangleright 16 dimensions
- distribution features non-trivial correlations
- ▶ factor 8 efficiency gain over VEGAS
- \blacktriangleright FM better than discrete flow
- \blacktriangleright high cut efficiency
- ▶ bootstrap training improves performance

Results: $pp \rightarrow Z + 4j$ single channel with PEPPER

NNLO integration with STRIPPER

- \triangleright sector-improved residue subtraction scheme for higher order calc.
- collaboration with Rene Poncelet and Steffen Schumann
- ▶ developed python interface to C++ code
- \triangleright select individual infrared limits in sectors where poles can be extracted and cancelled by virtual corrections
	- \rightarrow σ integral becomes sum of sector integrals

Example:

- $gg \rightarrow t\bar{t}g$ single unresolved (NLO real contribution)
	- \triangleright example has 8 dimensions (+2 discrete inputs: sectors, polarizations)
	- 2 sectors, 4 polarizations

Results: $gg \to t\bar{t}g$ with STRIPPER

- \blacktriangleright have to deal with negative weights (integrand is not positive definite)
- \blacktriangleright typically one adapts $g(x)$ to $|d\sigma|$
- \triangleright found that stratification into positive/negative parts is better than learning |f| \rightarrow relies on flows being able to differentiate between pos/neg very efficiently
- $▶$ sectors & polarizations sampled as discrete variables $→$ conditional flow

Results: $gg \rightarrow t\bar{t}g$ with STRIPPER

Outlook

- $▶$ investigate scaling behaviour \rightarrow go to $Z + 5j$ When to prefer continuous flow over discrete flow?
- \triangleright condition flow on flavour combinations to sample hadronic interactions with a single model
- make best use of existing multichannel samplers (as base distribution or for generating training data)
- ▶ evaluate performance for a full-featured NNLO calculation with STRIPPER

Conclusions

- \triangleright Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
- interesting relations to Optimal Transport theory
- \blacktriangleright training is efficient and scalable
- \triangleright we find significantly improved MC variances and unweighting efficiencies for different HEP examples
- \triangleright continuous flow performs slightly better than discrete flow
- normalizing flows for higher order are a promising direction for future research

Conclusions

- \triangleright Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
- interesting relations to Optimal Transport theory
- training is efficient and scalable
- \triangleright we find significantly improved MC variances and unweighting efficiencies for different HEP examples
- \triangleright continuous flow performs slightly better than discrete flow
- \triangleright normalizing flows for higher order are a promising direction for future research

Questions and suggestions are welcome!

Backup Slides

QCD cross-sections

QCD cross-sections

Partonic cross-section:

$$
d\hat{\sigma}_{p_i p_j \to \{p_f\}}(x_1, x_2, \mu_F^2) = \frac{1}{2E_1 E_2 |v_1 - v_2|} \left(\prod_f \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right)
$$

$$
\times |\mathcal{M}(p_i p_j \to \{p_f\})|^2 (2\pi)^4 \delta^{(4)}(p_i + p_j - \sum p_f)
$$

 \rightarrow can be calculated from first principles

Unweighted event generation (rejection sampling)

▶ sample from proposal $g(x)$ (via inverse transform) \blacktriangleright determine weights $w(x) = \frac{f(x)}{g(x)}$ \triangleright accept events with probability $p_{\text{accept}(x)}$ $w(x)$ w_{max} \rightarrow reduce sample size!

► unweighting efficiency:
$$
\eta = \frac{\langle w \rangle}{w_{\text{max}}}
$$

VEGAS algorithm

- \blacktriangleright piecewise constant density over $[0, 1)^d$
- ▶ factorized: $q(\mathbf{x}) = \prod_{i=1}^{d} q_i(x_i)$
- \blacktriangleright adapt bin boundaries to minimize variance

VEGAS algorithm

- \blacktriangleright piecewise constant density over $[0, 1)^d$
- ▶ factorized: $q(\mathbf{x}) = \prod_{i=1}^{d} q_i(x_i)$
- \blacktriangleright adapt bin boundaries to minimize variance

- \blacktriangleright piecewise linear mapping with uniform base distribution
- \triangleright optimise a proposal by learning missing structure
- \triangleright apply to each channel in a multichannel

VEGAS algorithm – limitations

- ▶ factorised ansatz does not allow to learn correlations
	- \rightarrow phantom peaks

VEGAS algorithm – limitations

- \triangleright factorised ansatz does not allow to learn correlations \rightarrow phantom peaks
- \triangleright bin boundaries are not well aligned with cuts

 \rightarrow replacing vEGAS with normalizing flows reduces the spread of weights $_{23}$

Discrete flow results: unweighted events for $gg \rightarrow 4g$

E. Bothmann, TJ, M. Knobbe, T. Schmale, S. Schumann: SciPost Phys. 8, 069 (2020) 24

Continuous normalizing flows – Neural ODE

The instantaneous change of variable is related to the continuity equation well known in physics:

$$
\frac{\mathrm{d}}{\mathrm{d}t}p_t(\mathbf{x}) + \mathrm{div}(p_t(\mathbf{x})v_t(\mathbf{x})) = 0
$$

where v_t is a time-dependent vector field and div $=\sum_{i=1}^d v_i$ $i=1$ д ∂x^i \rightarrow probability density 'flows' like a fluid with velocity v_t

Simulation-free training (flow matching)

Regression objective for the vector field:

$$
\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], x \sim p_t(x)} ||v_t(x;\theta) - u_t(x)||^2
$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Recall the continuity equation:

$$
\frac{\mathrm{d}}{\mathrm{d}t}p_t(\mathbf{x}) + \mathrm{div}(p_t(\mathbf{x})u_t(\mathbf{x})) = 0
$$

 \rightarrow constructing p_t or u_t is equivalent

We can construct conditional probability paths with the correct marginals and their corresponding vector fields!

Lipman et al. ICLR 2023 26

Conditional probability paths

given data samples $x_1 \thicksim q(x_1)$, construct p_t as a mixture of simpler probability paths:

$$
p_t(x) = \int p_t(x|x_1) q(x_1) dx_1
$$

where the conditional probability path $p_t(\text{x}|{\text{x}}_1)$ satisfies

 $p_0(x|x_1)$ simple base distribution $p_1(x|x_1) = \mathcal{N}(x|x_1, \sigma^2)$ normal concentrated around x_1

it is generated by a conditional vector field $u_t(x \vert x_1)$ which has the correct marginal to generate $p_t(x)$:

$$
u_t(x) = \int u_t(x|x_1) \frac{p_t(x|x_1) q(x_1)}{p_t(x)} dx_1
$$

(proof using continuity equation)

Gaussian probability paths

consider Gaussian probability paths:

$$
p_t(x|x_1) = \mathcal{N}(x | \mu_t(x), \sigma_t(x_1)^2 I),
$$

where

$$
\mu_0(x_1) = 0
$$

\n
$$
\sigma_0(x_1) = 1
$$

\n
$$
\mu_1(x_1) = x_1
$$

\n
$$
\sigma_1(x_1) = \sigma_{\min}
$$

simplest flow is a linear interpolation between $t = 0$ and $t = 1$:

$$
p_t(x|x_1) = \mathcal{N}(x \mid tx_1, \left(t\sigma_{\min} - t + 1\right)^2 I)
$$

 \rightarrow OT displacement map between two Gaussians this path is generated by the vector field

$$
u_t(x|x_1) = \frac{x_1 - (1 - \sigma_{\min})x}{1 - (1 - \sigma_{\min})t}
$$

Flow Matching (Lipman et al.)

