Exploring Phase Space with Flow Matching ML4Jets 2024 Paris

Timo Janßen

Campus-Intitute Data Science, Georg-August-Universität Göttingen

with Fabian Sinz and Bernhard Schmitzer

5 November 2024

Motivation

> parton-level Monte Carlo event generation scales badly with number of particles

- increasing number of Feynman diagrams
- decreasing unweighting efficiency
- HL-LHC demands more simulated data
 - \rightarrow improve sampling efficiency
- ▶ Here: learn to sample efficiently with Continuous Normalizing Flows (CNFs)
- ▶ Note: results are preliminary, no publication yet

Monte Carlo event generators

hard interaction

- full-featured simulation
- from high to low energy scales
- hard interaction of quarks & gluons via perturbation theory
- sample 4-momenta according to differential cross section
 - \rightarrow expensive, multimodal, narrow peaks, cuts
- factorize hard interaction from PDFs, parton shower, hadronization, decays, electroweak corrections, multiple interaction, ...

Sampling basics: importance sampling

$$\int_{[0,1]^d} f(x) \,\mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)} \,, \quad x_i \sim g(x)$$

draw points from a proposal distribution

• points come with weights
$$w_i = \frac{f(x_i)}{g(x_i)}$$

spread of weights is small if proposal is close to target

Sampling basics: importance sampling

$$\int_{[0,1]^d} f(x) \,\mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x)$$

draw points from a proposal distribution

- ▶ points come with weights $w_i = \frac{f(x_i)}{g(x_i)}$
- spread of weights is small if proposal is close to target

$$\boxed{ \text{multichannel:} \quad g(x) = \sum_{i}^{N_c} \alpha_i g_i(x), \quad \sum_{i}^{N_c} \alpha_i = 1 }$$

- use mixture distribution for multimodal targets
- construct channels based on physics knowledge
- automatic channel weight optimization [Kleiss&Pittau Comput.Phys.Commun. 83 (1994) 141-146]

Normalizing Flows

z

based on change-of-variable formula:

$$\mathbf{x} = g(\mathbf{z}) \quad \Rightarrow \quad p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^T} \right) \right|^{-1}$$

 \rightarrow transform simple distribution into complex one

key properties

- invertible (bijective map)
- can evaluate probability density exactly
- parameterized by NNs \rightarrow train via loss minimization
- use for adaptive importance sampling
 - replacement for VEGAS [Lepage (1978), JCP 27 (2)]

х

target distribution

flow

 $(x)^{c}$

Normalizing Flows

We can distinguish three kinds of normalizing flows:

- discrete flows (autoregressive, coupling)
- invertible residual networks
- continuous time flows (Neural ODEs)

Distinguishing feature: How the Jacobian is made tractable

(a) Det. Identities (Low Rank) (b) Autoregressive (Lower Triangular)

(c) Coupling (Structured Sparsity)

(d) **Unbiased Est.** (Free-form)

Discrete flow results: unweighted events for $gg \rightarrow 4g$

weight distribution

- presented at ML4Jets 2021
- Ist application of NFs to HEP phase space sampling
- ► HAAG phase space mapping [van Hameren&Papadopoulos, Eur.Phys.J.C25:563-574,2002]
- ▶ 8 dimensions, multichannel with 3 channels
- remap each channel with one normalizing flow
- non-trivial phase space cuts

Continuous normalizing flows - Neural ODE

reconsider change of variable formula:

$$\mathbf{x} = g(\mathbf{z}) \quad \Rightarrow \quad p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z}) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}^T} \right) \right|^{-1}$$

now consider a transformation continuous in time:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = g(\mathbf{x}(t), t) \quad \Rightarrow \quad \frac{\partial \log p_{\mathbf{x}}(\mathbf{x})}{\partial t} = -\operatorname{tr}\left(\frac{\mathrm{d}g}{\mathrm{d}\mathbf{x}(t)}\right)$$

▶ g only needs to be Lipschitz continuous but not bijective → use a neural network

- free-form Jacobian
- trace scales better than determinant

Continuous normalizing flows - Neural ODE

We can calculate the log probability together with the flow trajectory by numerically solving the ODE

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} g(\mathbf{x},t) \\ \log p_t(g(\mathbf{x},t)) \end{bmatrix} = \begin{bmatrix} v_t(g(\mathbf{x},t)) \\ -\operatorname{div}(p_t(\mathbf{x})v_t(\mathbf{x})) \end{bmatrix}$$

given the initial conditions

$$\frac{g(\mathbf{x},0)}{\log p_0(g(\mathbf{x},0))} = \begin{bmatrix} \mathbf{z} \\ p_{\mathbf{z}}(\mathbf{z}) \end{bmatrix}$$

 \rightarrow flow from base $p_0 = p_z$ to $p_1(\mathbf{x})$ by integrating over $t \in [0, 1]$

given a sample \mathbf{x}_1 , we can compute $p_1(\mathbf{x}_1)$ by solving the ODE in reverse

Training a CNF

- approximate the target vector field with NN $v_t(\mathbf{x}; \theta)$
- train by minimizing the KL divergence between the target distribution and the generated distribution (equivalent to training of discrete flows)
- gradients for backpropagation are available through the adjoint ODE
- integrating the ODE requires many evaluation of the vector field
 - \rightarrow slow training and sampling

Simulation-free training (flow matching)

Regression objective for the vector field:

$$\mathcal{L}_{\mathsf{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], x \sim p_t(x)} \| v_t(x;\theta) - u_t(x) \|^2$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Simulation-free training (flow matching)

Regression objective for the vector field:

$$\mathcal{L}_{\mathsf{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x \sim p_t(x)} \| v_t(x;\theta) - u_t(x) \|^2$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Conditional flow matching objective:

$$\mathcal{L}_{\mathsf{CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x_1 \sim q(x_1), \ x \sim p_t(x|x_1)} \| v_t(x;\theta) - u_t(x|x_1) \|^2$$

 \rightarrow the gradients w.r.t. θ are the same as for \mathcal{L}_{FM} !

Choose Gaussian probability paths:

$$p_t(x|x_1) = \mathcal{N}(x \mid tx_1, (t\sigma_{\min} - t + 1)^2 I)$$

Conditional Flow Matching

Λ Λ Λ

Phase space parameterization: CHILI

- simple yet efficient algorithm for phase space sampling
- single t-channel combined with any number of s channel decays
- used in the GPU event generator PEPPER [Bothmann et al. arXiv:2311.06198]
- ▶ NF leads to narrower weight distributions
- diminishing gains when more jets are added

Results: $pp \rightarrow Z + 4j$ single channel with PEPPER

- ▶ partonic channel $d\bar{d} \rightarrow e^+e^-gggg$
- 16 dimensions
- distribution features non-trivial correlations
- factor 8 efficiency gain over VEGAS
- ▶ FM better than discrete flow
- high cut efficiency
- bootstrap training improves performance

Results: $pp \rightarrow Z + 4j$ single channel with PEPPER

NNLO integration with STRIPPER

- sector-improved residue subtraction scheme for higher order calc.
- collaboration with Rene Poncelet and Steffen Schumann
- developed python interface to C++ code
- select individual infrared limits in sectors where poles can be extracted and cancelled by virtual corrections
 - $ightarrow \sigma$ integral becomes sum of sector integrals

Example:

- $gg \rightarrow t\bar{t}g$ single unresolved (NLO real contribution)
 - > example has 8 dimensions (+2 discrete inputs: sectors, polarizations)
 - 2 sectors, 4 polarizations

Results: $gg \rightarrow t\bar{t}g$ with STRIPPER

- > have to deal with negative weights (integrand is not positive definite)
- typically one adapts g(x) to $|d\sigma|$
- ▶ found that stratification into positive/negative parts is better than learning |f| → relies on flows being able to differentiate between pos/neg very efficiently
- $\blacktriangleright\,$ sectors & polarizations sampled as discrete variables $\rightarrow\,$ conditional flow

	Integrator	MC estimate	pos. point fraction	neg. point fraction
pos.	VEGAS	1788.2 ± 1.9191	72.61%	27.38%
	IFLOW	1791.0 ± 0.52629	95.61%	4.39%
	flow matching	1790.9 ± 0.4405	98.08%	1.92%
neg.	VEGAS	-396.19 ± 0.83711	61.50%	38.49%
	IFLOW	-396.6 ± 0.17026	9.31%	90.69%
	flow matching	-396.8 ± 0.14114	4.01%	95.99%
sum	VEGAS	1392.01 ± 2.094		
	IFLOW	1394.4 ± 0.5532		
	flow matching	1393.4 ± 0.4626		
full PS	VEGAS	1393.6 ± 2.6374	71.06%	28.93%
	IFLOW	1393.4 ± 1.7923	80.86%	19.13%
	flow matching	1392.9 ± 1.8073	81.49%	18.51%

Results: $gg \rightarrow t\bar{t}g$ with stripper

Outlook

- ► investigate scaling behaviour → go to Z + 5j When to prefer continuous flow over discrete flow?
- > condition flow on flavour combinations to sample hadronic interactions with a single model
- make best use of existing multichannel samplers (as base distribution or for generating training data)
- ▶ evaluate performance for a full-featured NNLO calculation with STRIPPER

Conclusions

- > Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
- interesting relations to Optimal Transport theory
- training is efficient and scalable
- we find significantly improved MC variances and unweighting efficiencies for different HEP examples
- continuous flow performs slightly better than discrete flow
- normalizing flows for higher order are a promising direction for future research

Conclusions

- > Flow Matching is a surprisingly simple way of training flows with free-form Jacobian
- interesting relations to Optimal Transport theory
- training is efficient and scalable
- we find significantly improved MC variances and unweighting efficiencies for different HEP examples
- continuous flow performs slightly better than discrete flow
- > normalizing flows for higher order are a promising direction for future research

Questions and suggestions are welcome!

Backup Slides

QCD cross-sections

QCD cross-sections

Partonic cross-section:

$$\begin{split} \mathrm{d} \hat{\sigma}_{p_i p_j \to \{p_f\}}(x_1, x_2, \mu_F^2) &= \frac{1}{2E_1 E_2 |v_1 - v_2|} \left(\prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right) \\ &\times |\mathcal{M}(p_i p_j \to \{p_f\})|^2 (2\pi)^4 \, \delta^{(4)} \Big(p_i + p_j - \sum p_f \Big) \end{split}$$

 \rightarrow can be calculated from first principles

Unweighted event generation (rejection sampling)

 sample from proposal g(x) (via inverse transform)
determine weights w(x) = f(x)/g(x)
accept events with probability p_{accept(x)} = w(x)/w_{max} → reduce sample size!

• unweighting efficiency:
$$\eta = \frac{\langle w \rangle}{w_{\max}}$$

VEGAS algorithm

- piecewise constant density over $[0, 1)^d$
- factorized: $q(\mathbf{x}) = \prod_{i=1}^{d} q_i(x_i)$
- adapt bin boundaries to minimize variance

VEGAS algorithm

- piecewise constant density over $[0,1)^d$
- factorized: $q(\mathbf{x}) = \prod_{i=1}^{d} q_i(x_i)$
- adapt bin boundaries to minimize variance

- > piecewise linear mapping with uniform base distribution
- optimise a proposal by learning missing structure
- apply to each channel in a multichannel

VEGAS algorithm – limitations

- factorised ansatz does not allow to learn correlations
 - \rightarrow phantom peaks

VEGAS algorithm – limitations

- factorised ansatz does not allow to learn correlations
 - \rightarrow phantom peaks
- ▶ bin boundaries are not well aligned with cuts

 \rightarrow replacing vegas with normalizing flows reduces the spread of weights

Discrete flow results: unweighted events for $gg \rightarrow 4g$

E. Bothmann, TJ, M. Knobbe, T. Schmale, S. Schumann: SciPost Phys. 8, 069 (2020)

Continuous normalizing flows - Neural ODE

The instantaneous change of variable is related to the continuity equation well known in physics:

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(\mathbf{x}) + \mathrm{div}\big(p_t(\mathbf{x})\,\upsilon_t(\mathbf{x})\big) = 0$$

where v_t is a time-dependent vector field and div = $\sum_{i=1}^{d} \frac{\partial}{\partial x^i}$ \rightarrow probability density 'flows' like a fluid with velocity v_t

Simulation-free training (flow matching)

Regression objective for the vector field:

$$\mathcal{L}_{\mathsf{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], \ x \sim p_t(x)} \| v_t(x;\theta) - u_t(x) \|^2$$

with target probability density path $p_t(x)$ generated by vector field $u_t(x)$ \rightarrow intractable since we don't know a valid choice for $u_t(x)$

Recall the continuity equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(\mathbf{x}) + \mathrm{div}(p_t(\mathbf{x})\,u_t(\mathbf{x})) = 0$$

 \rightarrow constructing p_t or u_t is equivalent

We can construct conditional probability paths with the correct marginals and their corresponding vector fields!

Lipman et al. ICLR 2023

Conditional probability paths

given data samples $x_1 \sim q(x_1)$, construct p_t as a mixture of simpler probability paths:

$$p_t(x) = \int p_t(x|x_1) q(x_1) \,\mathrm{d}x_1$$

where the conditional probability path $p_t(x|x_1)$ satisfies

 $\begin{array}{ll} p_0(x|x_1) = p(x) & \text{simple base distribution} \\ p_1(x|x_1) = \mathcal{N}(x|x_1, \sigma^2 I) & \text{normal concentrated around } x_1 \end{array}$

it is generated by a conditional vector field $u_t(x|x_1)$ which has the correct marginal to generate $p_t(x)$:

$$u_t(x) = \int u_t(x|x_1) \frac{p_t(x|x_1) q(x_1)}{p_t(x)} dx_1$$

(proof using continuity equation)

Gaussian probability paths

consider Gaussian probability paths:

$$p_t(x|x_1) = \mathcal{N}(x | \mu_t(x), \sigma_t(x_1)^2 I),$$

where

$$\mu_0(x_1) = 0 \qquad \qquad \mu_1(x_1) = x_1 \\ \sigma_0(x_1) = 1 \qquad \qquad \sigma_1(x_1) = \sigma_{\min}$$

simplest flow is a linear interpolation between t = 0 and t = 1:

$$p_t(x|x_1) = \mathcal{N}(x | tx_1, (t\sigma_{\min} - t + 1)^2 I)$$

 \rightarrow OT displacement map between two Gaussians this path is generated by the vector field

$$u_t(x|x_1) = \frac{x_1 - (1 - \sigma_{\min})x}{1 - (1 - \sigma_{\min})t}$$

Flow Matching (Lipman et al.)

