CaloDREAM: Detector Response Emulation via Attentive Flow Matching

Luigi Favaro in collaboration with: Ayodele Ore, Sofia Palacios Schweitzer, and Tilman Plehn based on arXiv:2405.09629

ML4Jets 2024 Paris - 05.11.2024

Particle Physics Phenomenology after the Higgs Discovery

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Collaborative Research Center TRR 257

Simulation Chain

• First-principled simulations, from QFT to events

Simulation Chain

• First-principled simulations, from QFT to events

LHC future plan

- The high-luminosity data taking phase is approaching...
- Simulations will have to match the statistics of collected data

Need for fast generators...

... which are still (more) accurate and precise

LHC future plan

- The high-luminosity data taking phase is approaching...
- Simulations will have to match the statistics of collected data

Need for fast generators...

... which are still (more) accurate and precise

find new physics! (or rather understand LHC data)

What are we simulating?

The leading speed bottleneck is the simulation of calorimeter showers

Incident particle drastically changes the shower:

- $\gamma/e^{+/-}$: electromagnetic showers
 - → mostly Bremsstrahlung and pair-production
- hadrons: hadronic showers

 \rightarrow complex, non-perturbative phenomenology

Calorimeter shower represented by the energy deposition in the detector (à la CaloChallenge)

Generative networks

Modern generative networks:

- Complex architectures but still fitting functions
- provided data, approximate Geant4
- speed and precision are key
- tradeoff

Conditional Flow Matching

Promote the discrete transformation to a continuous one:

$$\frac{dx(t)}{dt} = v(x(t), t) \quad \text{with} \quad x \in \mathbb{R}^d$$

We want to impose the boundary conditions for *p*

Need to define the training trajectories \rightarrow linear, simplest choice

Learn this velocity field with a NN:

$$\frac{\partial p(x,t)}{\partial t} + \nabla_x [p(x,t)v(x,t)] = 0.$$

$$(x,t): \qquad p(x,t) \to \begin{cases} \mathcal{N}(x;0,1) & t \to 1 \\ p_{data}(x) & t \to 0 \end{cases}.$$

$$x(t \mid x_0) = (1 - t)x_0 + t\epsilon \qquad \epsilon \sim \mathcal{N}(0, 1)$$

$$\mathscr{L} = \left| \left| v(x,t) - v_{\phi}(x,t) \right| \right|_{L_2}$$

Conditional Flow Matching

$$t \sim \mathcal{U}([0,1])$$
 ——

$$x_{0} \sim p_{\text{data}}(x_{0}), \epsilon \sim \mathcal{N}(0, 1) \longrightarrow x(t)$$

$$\mathcal{L}_{\text{CFM}} = \left\langle \left[v_{\phi}((1-t)x_0 + t\epsilon, t) - (\epsilon - x_0) \right]^2 \right\rangle_{U(0,1), \mathcal{N}, p_{data}}$$

Sampling \longrightarrow solve the differential equation num

Jet diffusion versus JetGPT

nerically:
$$x(t = 0) = x(t = 1) - \int_{0}^{1} v_{\phi}(x, t) dt$$

٠

Luigi Favaro

Preprocessing

Preprocessing

normalized showers

$$u_0 = \frac{\sum_i E_i}{f E_{inc}}$$
 and $u_i = \frac{E_i}{\sum_{j \ge i} E_j}$,
logit

$$\begin{aligned} x_{\alpha} &= (1 - 2\alpha)x + \alpha \in [\alpha, 1 - \alpha] & \text{with} \quad \alpha = 10^{-6} \\ x' &= \log \frac{x_{\alpha}}{1 - x_{\alpha}}. \end{aligned}$$

Factorise the problem into:

- learn the energy distribution, $p(u | E_{inc})$
- learn the normalised voxels $p(x | u, E_{inc})$

normalized showers

CaloDREAM — **Detector Response Emulation via Attentive flow Matching**

Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer, and Tilman Plehn

Institut für Theoretische Physik, Universität Heidelberg, Germany

Factorise the problem into:

- learn the energy distribution, $p(u | E_{inc})$
- learn the normalised voxels $p(x | u, E_{inc})$

Submission

arXiv:2405.09629

May 20, 2024

05/11/24 - Paris

Luigi Favaro

CaloDREAM: TraCFM

Energy network

Autoregressive transformer:

Embed each condition separately; lacksquare

CaloDREAM: TraCFM

Energy network

Autoregressive transformer:

- Embed each condition separately; \bullet
- Encode energy conditions \longrightarrow transformer backbone;
- Masked attention over previous layers:

$$c_i = c_i(u_0, \dots, u_{i-1}, E_{inc});$$

CaloDREAM: TraCFM

Energy network

Autoregressive transformer:

- Embed each condition separately;
- Encode energy conditions \longrightarrow transformer backbone;
- Masked attention over previous layers:

$$c_i = c_i(u_0, \dots, u_{i-1}, E_{inc});$$

• Conditions, energy, and time predict v_{ϕ} .

Vision transformer:

• Split detector into patches;

e.g. for dataset-2: $(r, \alpha, z) = (1, 16, 3)$

Vision transformer:

- Split detector into patches;
- Embed patches and conditions; ullet

Networks

Vision transformer:

- Split detector into patches;
- Embed patches and conditions; ullet
- Apply a residual transformation to the inputs: - Multi-head self-attention

 $x_h = x + \gamma_h \cdot g_h(a_h x + b_h)$

 γ_h, a_h, b_h learnable, conditioned on t, E_{inc}, u

Networks

Vision transformer:

- Split detector into patches;
- Embed patches and conditions; ullet
- Apply a residual transformation to the inputs: \bullet - Multi-head self-attention;
 - Fully-connected network.

$$x_l = x_h + \gamma_l \cdot g_l(a_l x_h + b_l)$$

 γ_l, a_l, b_l learnable, conditioned on t, E_{inc}, u

Networks

Vision transformer:

- Split detector into patches;
- Embed patches and conditions; \bullet
- Apply a residual transformation to the inputs: \bullet - Multi-head self-attention;
 - Fully-connected network.

$$x_l = x_h + \gamma_l \cdot g_l(a_l x_h + b_l)$$

 γ_l, a_l, b_l learnable, conditioned on t, E_{inc}, u

Predict a v_{θ} for each voxel. ullet

Networks

CaloDREAM: laViT Latent network training $E_{\rm inc}$, u r_ψ Encoder r(t) $\mathcal X$ - $\epsilon \sim \mathcal{N}(0,1)$ $z \sim \mathcal{N}(0,1)$ $t \sim \mathcal{U}(0,1)$

sampling

Networks

• train a ViT in the latent space;

CaloDREAM: laViT Latent network training $E_{\rm inc}, u$ r_{ψ} Encoder r(t) \mathcal{X} $\epsilon \sim \mathcal{N}(0,1)$ $z \sim \mathcal{N}(0,1)$ $t \sim \mathcal{U}(0,1)$

sampling

CaloDREAM

Networks

 $\nu_{ heta}$

CFM

- VAE with Bernoulli decoder;
- train a ViT in the latent space;
- sampling done in *z* space:

 $u \sim p_{\phi}(u \,|\, E_{inc})$ $r \sim p_{\theta}(r, 1 \mid u, E_{inc})$ $x = D_{\psi}(r, u, E_{inc})$

 x_{ψ}

Energy ratio

Energy ratio Layer energy

Center of energy

Width of the center

Voxel

• Autoencoder is not able to reconstruct zero voxels

Energy ratio

Energy ratio Layer energy

Center of energy

Width of the center

Voxel

• Autoencoder is not able to reconstruct zero voxels

The ultimate metric

Evaluation done in terms of the area-under-the-ROC (AUC) curve

 \rightarrow indistinguishable samples if AUC=0.5

Better to look at the weight distribution

AUC (LL/HL) DS3 DS2 0.54/0.52 0.63/0.53 ViT laViT 0.58/0.53 0.62/0.59

Bespoke samplers

- Sampling requires multiple evaluation of the neural network;
- BNS \longrightarrow keep the model fixed and learn a model specific solver;
- Take a general expression for a non-stationary solver:

$$(t_i, x_i)_{i=0}^N$$
 $x_{i+1} = a_i x_0 -$

• Minimize either the global or the local truncation error:

$$\mathscr{L}_{GTE} = \langle [x_{ref}(1) - x_N]^2 \rangle_{x_0 \sim \mathscr{N}},$$

- x_0 noise point V_i vector fields $+ b_i \cdot V_i$ a_i, b_i, t_i learnable parameters

$$\mathcal{L}_{LTE} = \left\langle \sum_{i=0}^{N-1} \left[x_{ref}(t_{i+1}) - (a_i x_0 + b_i \cdot V_{ref,i}) \right]^2 \right\rangle_{x_0 \sim \mathcal{N}}$$

Bespoke samplers

From the CaloChallenge

Metrics from the CaloChallenge:

- Great performance over classifiers and KPD/FPD \bullet
- Also faster than other diffusion models \bullet

05/11/24 - Paris

From the CaloChallenge

Conclusions

- Diffusion models are state-of-the-art for fastsim;
- CaloDREAM:
 - awesome generation quality for both DS2/DS3;
 - reduce number of function evaluation with BNS;
- Training can get expensive:
 - size of DS3 network limited by our available resources;
- Now looking at making the model usable for the community.

Conclusions

- Diffusion models are state-of-the-art for fastsim;
- CaloDREAM:
 - awesome generation quality for both DS2/DS3;
 - reduce number of function evaluation with BNS;
- Training can get expensive:
 - size of DS3 network limited by our available resources;
- Now looking at making the model usable for the community.

Thank you for your attention!

Backup

The ultimate metric

- Classifiers are the best tools we have to test our generative networks;
- the output approximates the quantity:

$$C(x) = \frac{p_{data}}{p_{data} + p_{\theta}} \qquad \qquad \frac{p_{data}}{p_{\theta}} = \frac{C(x)}{1 - C(x)}$$

- Optimal observable for a two hypothesis test according to the Neyman-Pearson lemma
- Proper training is essential: architecture, over-fitting, calibration,...

from arXiv:2305.16774

we can easily extract weights from properly trained classifiers $\longrightarrow w(x) \approx \frac{P_{data}}{W(x)}$ p_{θ}

AE reco.

