Enhancing generalization in high energy physics using white-box adversarial attacks

ROTHEN, Franck¹

franck.rothen@unige.ch

KLEIN, Samuel¹ LEIGH, Matthew¹

samuel.klein@unige.ch matthew.leigh@unige.ch

GOLLING, Tobias¹ tobias.golling@unige.ch

06. November 2024

¹University of Geneva, Faculty of science, DPNC

Introduction and Motivation

- Uncover new fundamental physics at the LHC through advanced reconstruction and classification algorithms.
- Machine learning is a key tool for background discrimination, e.g., in rare Higgs or SUSY decay.
- Supervised models are trained on Monte Carlo data and tested on real data.

- This study warns against over-reliance on simulation artifacts and poor generalization to real data.
- The key target of this study is improving generalization performance.

Table of Contents

- Introduction and Motivation
- Experimental setup
- B Lack of Generalization
- Orrelation with sharpness
- 6 Adversarial attacks
- 6 Quantifying experimental sharpness
- Results
- 8 Conclusion

Experimental setup

- Classification task
- Higgs decay $H o b\bar{b}$ as signal
- QCD jets as background
- Re-simulation based dataset (RS3L) arXiv:2403.07066, Harris et al.
- Physical processes are generated and re-showered using different simulators
- Both dense and transformer models are used

Augmentation

RS3L0	Jet showered with Pythia8 (Nominal scenario)
RS3L4	Use of Herwig7 as parton shower

Generalization performance of default models

• Models are trained and cross-evaluated on both Herwig and Pythia

	Evaluation sets		
Training sets	Pythia	Herwig	
Pythia	$\textbf{24.2} \pm \textbf{0.4}$	11.3 ± 0.2	
Herwig	15.0 ± 0.2	$\textbf{21.2} \pm \textbf{0.4}$	

Table: Inverse of the FPR at 0.85 signal efficiency

- Poor generalization between Pythia and Herwig datasets.
- Models overfit to simulation.
- Need for cross-evaluation performance improvement.

Sharpness definition and relation with generalization

• Simpler models generalize better (MDL principle).

Faculty of science

Neural Computation, 9(1):1-42,

Hochreiter et al.

 Sharpness as a proxy for model complexity.

arXiv:1609.04836, Keskar et al.

Definition 1. Sharpness

A minimum b is sharper than a minimum a if,

$$\mathbb{E}_{\left|\left|\delta\right|\right|=\epsilon}\left[\Delta\mathcal{L}_{a}\left(\delta\right)\right] \leq \mathbb{E}_{\left|\left|\delta\right|\right|=\epsilon}\left[\Delta\mathcal{L}_{b}\left(\delta\right)\right], \forall \epsilon \in \mathbb{R}_{+},$$

where $\Delta \mathcal{L}_i(\delta) := \mathcal{L}_i(x + \delta) - \mathcal{L}_i(x)$ is the increase in loss due to the perturbation δ for the local minimum *i*.

Adversarial attacks

Theoretical Adversarial Loss $\mathcal{L}_{\mathcal{A}}$

$$\mathcal{L}_{\mathsf{A}}(w, x, y) = \max_{\|\delta\| < \epsilon} \mathcal{L}(w, x + \delta, y),$$

where ϵ is the perturbation strength.

Figure: arXiv:1412.6572, Goodfellow et al.

Feature Space Perturbation: FGSM and PGD

Fast Gradient Sign Method (FGSM)

 $x \to x' = x + \epsilon \cdot \operatorname{sign} \nabla_x \mathcal{L}(w, x, y).$

- FGSM is a first-order Taylor expansion.
- Backpropagation needs to be performed twice.
- Projected Gradient Descent (PGD) is obtained by iterating FGSM.
- PGD is more effective but computationally expensive.

arXiv:1412.6572, Goodfellow et al. arXiv:1706.06083, Madry et al.

Weight Space Perturbation: SAM and SSAM-D

$$\mathcal{L}_{\mathsf{A}} = \max_{\|\epsilon\| \le \rho} \mathcal{L}(w + \epsilon, x, y)$$

 Sharpness Aware Minimization (SAM) is a first-order Taylor expansion.

Sharpness Aware Minimization (SAM)

 $\epsilon_{SAM} := \rho \cdot \operatorname{sign}\left(\nabla_{w} \mathcal{L}\left(w\right)\right)$

$$abla_w \mathcal{L}_{\mathsf{SAM}} \approx
abla_w \mathcal{L}(w)|_{w+\epsilon}$$

arXiv:2010.01412, Foret et al. arXiv:2210.05177, Mi et al. Dynamical Sparse SAM (SSAM-D)

Faculty of science

$$\mathcal{L}_{\mathsf{SSAM}} := \max_{\|\epsilon\| \le \rho} \mathcal{L} \left(w + \epsilon \odot \mathbf{m}_w \right),$$

where \mathbf{m}_{w} is the mask.

- Only 5% of the weights exhibit sharp behavior.
- The aim is to reduce the training penalty by focusing on these weights.
- The mask is dynamically updated during training.

Sharpness analysis: Sampling and Gradient Ascent

- A way to quantify loss sharpness is desired.
- Direct computation results in:

$$\mathbb{E}\left[\mathcal{L}_{\rho}\right] = \frac{1}{S_{\epsilon}} \oint_{\|\epsilon\|=\rho} \mathcal{L}\left(w + \epsilon, x, y\right) d^{n} \epsilon \stackrel{\mathsf{M.C}}{\approx} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(w + \epsilon_{i}, x, y\right),$$

- In practice, this requires too many random perturbations to obtain an accurate average of the landscape.
- Instead, let's consider the sharpness upper bound as a proxy:

$$\max_{\|\epsilon\| \le \rho} \mathcal{L}^{a} (w + \epsilon) \le \max_{\|\epsilon\| \le \rho} \mathcal{L}^{b} (w + \epsilon)$$
$$\stackrel{\approx}{\Rightarrow} \mathbb{E} \left[\mathcal{L}_{\rho}^{a} \right] \le \mathbb{E} \left[\mathcal{L}_{\rho}^{b} \right].$$

Gradient ascent path results

- Adversarial training respectively reduces loss sharpness in their own spaces.
- Loss sharpness reduction in one space doesn't imply the same in the other.

Hessian analysis

Taylor expansion of perturbed loss landscape

$$\mathcal{L}(w+\epsilon) = \mathcal{L}(w) + \underbrace{\nabla \mathcal{L}(w)^{T} \epsilon}_{=0, \text{ local minimum}} + \frac{1}{2} \epsilon^{T} H_{\mathcal{L}}(w) \epsilon + \mathcal{O}(\epsilon^{3}),$$

- Hessian determinant and eigenvalues measure the Gaussian curvature of the loss landscape.
- Hessian matrix (H_L)_{ij} = ∂_{wi} (∂_{wj}L) can be computed through n backpropagation steps.
- Computation is expensive, especially in weight space $(n \gg 1)$.
- Reduction of parameter space. (Only classification layer and only top 10 constituents)
- Von Mises (Power iteration) method for eigenvalues computation.

Hessian analysis results

Table: Largest Hessian eigenvalues. Lower values correlate with wider minimas.

Methods	Weight-space		Feature-space	
	Hbb	QCD	Hbb	QCD
Default	0.31 ± 0.05	0.28 ± 0.07	0.84 ± 0.08	0.03 ± 0.01
SAM	0.11 ± 0.01	$\textbf{0.12} \pm \textbf{0.01}$	0.82 ± 0.11	0.07 ± 0.04
SSAMD	0.22 ± 0.01	0.19 ± 0.03	0.98 ± 0.09	0.04 ± 0.01
FGSM	$\textbf{0.80} \pm \textbf{0.09}$	$\textbf{0.49} \pm \textbf{0.07}$	0.17 ± 0.01	0.024 ± 0.006
PGD	$\textbf{0.72} \pm \textbf{0.07}$	$\textbf{0.42}\pm\textbf{0.08}$	$\textbf{0.056} \pm \textbf{0.004}$	$\textbf{0.005} \pm \textbf{0.002}$

- Adversarial training respectively reduces hessian eigenvalues in their own spaces.
- PGD significantly outperforms FGSM in feature space.

Results

Fractional improvement score ΔS

$$\Delta S = \frac{{S'}_a^b - S_a^b}{S_b^b - S_a^b},$$

where S_i^j : score of default model trained on *i* and evaluated on *j* S': score of considered method.

Table: Fractional generalization performance ΔS increase

Evaluation cases	SAM	SSAMD	FGSM	PGD
$Pythia \to Herwig$	$\textbf{0.44} \pm \textbf{0.02}$	$\textbf{0.47} \pm \textbf{0.01}$	0.21 ± 0.01	0.46 ± 0.02
$Herwig \to Pythia$	$\textbf{0.20}\pm\textbf{0.01}$	$\textbf{0.23}\pm\textbf{0.01}$	0.44 ± 0.02	$\textbf{0.76} \pm \textbf{0.03}$

- Adversarial training significantly improves generalization performance.
- PGD boosts generalization performance the most.

Conclusion

- Monte-Carlo does not cross-generalize well.
- Highlighted the importance of sharpness in generalization.
- Reviewed adversarial attacks methods in the context of jet tagging.
- Introduced new sharpness analysis methods.
- Demonstrated that adversarial training significantly improves generalization performance.

Faculty of science UNIVERSITÉ

Backup: Jet and constituents features list

Jet Feature	S
Feature $\log p_T$	Description Logarithm of the jet transverse momentum
log III	Logantinii or the jet mass
Particle Co	nstituents Features
Feature	Description
log p _T	Logarithm of the transverse momentum
log <i>E</i>	Logarithm of the energy
$\Delta\eta$	Pseudorapidity difference relative to the jet
$\Delta \phi$	Azimuthal angle difference relative to the jet
ΔR	Distance from the from the jet axis in the $\eta-\phi$ plane
charge	Charge of the particle
tanh <i>d</i> 0	Hyperbolic tangent of the transverse impact parameter
tanh <i>dz</i>	Hyperbolic tangent of the longitudinal impact parameter
isPhoton	Binary indicator of whether the particle is a photon
isMuon	Binary indicator of whether the particle is a muon
isElectron	Binary indicator of whether the particle is an electron
isCH	Binary indicator of whether the particle is a charged hadron
isNH	Binary indicator of whether the particle is a neutral hadron