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Introduction and Motivation

• Uncover new fundamental physics at the LHC through advanced
reconstruction and classification algorithms.

• Machine learning is a key tool for background discrimination, e.g., in
rare Higgs or SUSY decay.

• Supervised models are trained on Monte Carlo data and tested on
real data.

• This study warns against over-reliance on simulation artifacts and
poor generalization to real data.

• The key target of this study is improving generalization performance.
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Experimental setup

• Classification task

• Higgs decay H → bb̄ as signal

• QCD jets as background

• Re-simulation based dataset (RS3L)
arXiv:2403.07066, Harris et al.

• Physical processes are generated and
re-showered using different simulators

• Both dense and transformer models are
used

Augmentation Description

RS3L0 Jet showered with Pythia8 (Nominal scenario)
RS3L4 Use of Herwig7 as parton shower
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Generalization performance of default models

• Models are trained and cross-evaluated on both Herwig and Pythia

Table: Inverse of the FPR at 0.85 signal efficiency

Evaluation sets
Training sets Pythia Herwig

Pythia 24.2± 0.4 11.3± 0.2
Herwig 15.0± 0.2 21.2± 0.4

• Poor generalization between Pythia and Herwig datasets.

• Models overfit to simulation.

• Need for cross-evaluation performance improvement.
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Sharpness definition and relation with generalization

• Simpler models generalize
better (MDL principle).
Neural Computation, 9(1):1–42,

Hochreiter et al.

• Sharpness as a proxy for model
complexity.
arXiv:1609.04836, Keskar et al.

Definition 1. Sharpness

A minimum b is sharper than a minimum a if,

E
||δ||=ϵ

[∆La (δ)] ≤ E
||δ||=ϵ

[∆Lb (δ)] ,∀ϵ ∈ R+,

where ∆Li (δ) := Li (x + δ)− Li (x) is the increase in loss due to the
perturbation δ for the local minimum i .
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Adversarial attacks

Theoretical Adversarial Loss LA

LA (w , x , y) = max
∥δ∥<ϵ

L (w , x + δ, y) ,

where ϵ is the perturbation strength.

Figure: arXiv:1412.6572, Goodfellow et al.

ROTHEN, Franck 06.11.2024 Jet tagging generalization methods 7 / 16



Faculty of science

Feature Space Perturbation: FGSM and PGD

Fast Gradient Sign Method (FGSM)

x → x ′ = x + ϵ · sign∇xL(w , x , y).

• FGSM is a first-order Taylor
expansion.

• Backpropagation needs to be
performed twice.

• Projected Gradient Descent (PGD)
is obtained by iterating FGSM.

• PGD is more effective but
computationally expensive. arXiv:1412.6572, Goodfellow et al.

arXiv:1706.06083, Madry et al.
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Weight Space Perturbation: SAM and SSAM-D

LA = max
∥ϵ∥≤ρ

L (w + ϵ, x , y)

• Sharpness Aware Minimization
(SAM) is a first-order Taylor
expansion.

Sharpness Aware Minimization (SAM)

ϵSAM := ρ · sign (∇wL (w))

∇wLSAM ≈ ∇wL(w)|w+ϵ

arXiv:2010.01412, Foret et al.
arXiv:2210.05177, Mi et al.

Dynamical Sparse SAM (SSAM-D)

LSSAM := max
∥ϵ∥≤ρ

L (w + ϵ⊙mw ) ,

where mw is the mask.

• Only 5% of the weights exhibit
sharp behavior.

• The aim is to reduce the
training penalty by focusing on
these weights.

• The mask is dynamically
updated during training.
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Sharpness analysis: Sampling and Gradient Ascent

• A way to quantify loss sharpness is desired.

• Direct computation results in:

E [Lρ] =
1

Sϵ

∮
∥ϵ∥=ρ

L (w + ϵ, x , y) dnϵ
M.C
≈ 1

N

N∑
i=1

L (w + ϵi , x , y) ,

• In practice, this requires too many random perturbations to obtain
an accurate average of the landscape.

• Instead, let’s consider the sharpness upper bound as a proxy:

max
∥ϵ∥≤ρ

La (w + ϵ) ≤ max
∥ϵ∥≤ρ

Lb (w + ϵ)

≈⇒ E
[
La
ρ

]
≤ E

[
Lb
ρ

]
.
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Gradient ascent path results

Figure: Weight space perturbation Figure: Feature space perturbation

• Adversarial training respectively reduces loss sharpness in their own
spaces.

• Loss sharpness reduction in one space doesn’t imply the same in the
other.
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Hessian analysis

Taylor expansion of perturbed loss landscape

L(w + ϵ) = L(w) + ∇L(w)T ϵ︸ ︷︷ ︸
=0, local minimum

+
1

2
ϵTHL(w)ϵ+O(ϵ3),

• Hessian determinant and eigenvalues measure the Gaussian
curvature of the loss landscape.

• Hessian matrix (HL)ij = ∂wi

(
∂wjL

)
can be computed through n

backpropagation steps.

• Computation is expensive, especially in weight space (n ≫ 1).

• Reduction of parameter space. (Only classification layer and only
top 10 constituents)

• Von Mises (Power iteration) method for eigenvalues computation.
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Hessian analysis results

Table: Largest Hessian eigenvalues. Lower values correlate with wider minimas.

Methods Weight-space Feature-space
Hbb QCD Hbb QCD

Default 0.31± 0.05 0.28± 0.07 0.84± 0.08 0.03± 0.01
SAM 0.11± 0.01 0.12± 0.01 0.82± 0.11 0.07± 0.04
SSAMD 0.22± 0.01 0.19± 0.03 0.98± 0.09 0.04± 0.01
FGSM 0.80± 0.09 0.49± 0.07 0.17± 0.01 0.024± 0.006
PGD 0.72± 0.07 0.42± 0.08 0.056± 0.004 0.005± 0.002

• Adversarial training respectively reduces hessian eigenvalues in their
own spaces.

• PGD significantly outperforms FGSM in feature space.
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Results

Fractional improvement score ∆S

∆S =
S ′b

a − Sb
a

Sb
b − Sb

a

,

where S j
i : score of default model trained on i and evaluated on j

S ′: score of considered method.

Table: Fractional generalization performance ∆S increase

Evaluation cases SAM SSAMD FGSM PGD

Pythia → Herwig 0.44± 0.02 0.47± 0.01 0.21± 0.01 0.46± 0.02
Herwig → Pythia 0.20± 0.01 0.23± 0.01 0.44± 0.02 0.76± 0.03

• Adversarial training significantly improves generalization
performance.

• PGD boosts generalization performance the most.
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Conclusion

• Monte-Carlo does not cross-generalize well.

• Highlighted the importance of sharpness in generalization.

• Reviewed adversarial attacks methods in the context of jet tagging.

• Introduced new sharpness analysis methods.

• Demonstrated that adversarial training significantly improves
generalization performance.
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Backup: Jet and constituents features list

Jet Features

Feature Description
log pT Logarithm of the jet transverse momentum
log m Logarithm of the jet mass

Particle Constituents Features

Feature Description
log pT Logarithm of the transverse momentum
log E Logarithm of the energy
∆η Pseudorapidity difference relative to the jet
∆ϕ Azimuthal angle difference relative to the jet
∆R Distance from the from the jet axis in the η − ϕ plane
charge Charge of the particle
tanh d0 Hyperbolic tangent of the transverse impact parameter
tanh dz Hyperbolic tangent of the longitudinal impact parameter
isPhoton Binary indicator of whether the particle is a photon
isMuon Binary indicator of whether the particle is a muon
isElectron Binary indicator of whether the particle is an electron
isCH Binary indicator of whether the particle is a charged hadron
isNH Binary indicator of whether the particle is a neutral hadron
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