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Jets in Heavy lon Collisions (1)

e Jet quenching: a phenomenon of jet energy loss and redistribution that happens when a parton go
though a hot and dense quark gluon plasma (QGP) created by the heavy ion collisions

Proton

. Proton

Jet 2 | ""
Jet Quenching
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Jets in Heavy lon Collisions (2)

e MC events with jets in heavy ion collisions

= Pythia jets (signal) are embedded into &\; AT LAS
minimum-bias heavy-ion MC events e.qg. _};»_EXPERlMENT

HIJING (background) _ Run 168795, Event 7578342

. . . Time 2010-11-09 08:55:48 CET
= this bulk medium has properties such as
collective motion, e.g. flow

Topic 1: HIJING simulation event
generation using diffusion model
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Jets in Heavy lon Collisions (2)

e MC events with jets in heavy ion collisions

= Pythia jets (signal) are embedded into a}«, AT LAS
minimum-bias heavy-ion MC events e.qg. i EXPERIMENT

o
HIJING (background) ‘ _ Run 168795, Event 7578342

. . . Time 2010-11-09 08:55:48 CET
= this bulk medium has properties such as
collective motion, e.g. flow

Topic 1: HIJING simulation event
generation using diffusion model

e The huge amount of combinatoric
background produced from multiple
nucleon-nucleon collisions has to be
estimated and subftracted from jet
reconstruction

Topic 2: Jet background subtraction
using cycleGAN model
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Simulations of Relativistic Heavy lon Collisions

e O(1000) particles in one nuclear collision event
+ thousands shower steps per particle

= Simulation of the interaction of particles with detectors is

Phys. Rev. C 110, 034912
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Simulations of Relativistic Heavy lon Collisions

e O(1000) particles in one nuclear collision event
+ thousands shower steps per particle

= Simulation of the interaction of particles with detectors is

e Electron-lon Collider will need a large amount of simulations
of full detector with both physics and machine background

SPHENIX TPC

EIC CDR Phys. Rev. C 110, 034912
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Simulations of Relativistic Heavy lon Collisions

e O(1000) particles in one nuclear collision event
+ thousands shower steps per particle

= Simulation of the interaction of particles with detectors is

e Electron-lon Collider will need a large amount of S|mulat|ons
of full detector with both physics and machine background

ML can speed up and produce large amount of the heavy
lon event simulations!

SPHENIX TPC

We introduce full detector whole-event ML

simulations for heavy ion collisions
EIC CDR Phys. Rev. C 110, 034912
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SPHENIX Detector at RHIC

Tracking System
TPC -

INTT
MVTX -

..; |

-

kB

i f.i*' | Calorimeters |
| 1 Electromagnetic —
| 18 Inner Hadronic —
_Jl.:')

Outer Hadronic

e Data taking began last year!

e High-precision {racking system +
Hermetic Electromagnetic & Hadronic calorimeters
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Heavy lon Collision Event

« HIJING Monte Carlo event generator for Au+Au collisions at 4 /s\n=200 GeV
e Geant4 full detector simulation with the sPHENIX geometry

Head-on collision (0-10% Centrality) ({ Side collision (40-50% Centrality) \j\/

- sSPHENIX Simulation
Au + Au @ VSy\ = 200 GeV

sPHENIX Simulation

) Au + Au @ VSyy = 200 GeV

SPHEHW!IIX sPHEW!IX
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Tower Distributions

0-10% Centrality (( 40-50% Centrality ( [

Tower Energy [GeV]
Tower Energy [GeV]

* Full calorimeter towers (Electromagnetic + Inner hadronic + Outer hadronic) sor M08
» —]l.l<np<ll O0<o¢<2r
= (24 x 64) bins in (17, )
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Generative Al: Diffusion Model

e Diffusion Models:
text-to-image generation =
(e.g. StableDiffusion, Midjourney, Dalle-2)

= Popular in industry, yet relatively less used In
high-energy physics

= known for high fidelity

= put, still require improvements for finer details
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Diffusion Model (DALL-E3 by OpenAl) generating a SPHENIX meeting
Note difficulty in generating features such as text
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Denoising Diffusion Probabilistic Model (DDPM)

e DDPM provides high quality data from random noise

 Forward process: add random gaussian noise

e Reverse process: use neural network and generate data

* In real application, O(1,000) steps are used

forward step

reverse step
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Display of Generated Events

Training sample

S 57

S, 4

0-10% %’v =8
Centrality &
|_

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

=
S

40-50% o
Centrality
SORN:

Yeonju Go (BNL) ML4Jets @ Paris, France / 2024 Nov. 4-8th 10



Display of Generated Events

Training sample
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Performance: Transverse Energy (0-10%)

1x1 Tower E_§

4x4 Tower /X7 Tower 11x11 Tower All Towers

L 10 1x1 tower Centrality 0-10%

~F @ HIUING+G4
== (GAN
108k = DDPM

1

E; (1x1 tower) [GeV]

ML/HIJING+G4

2%x10~" 1 2 345

e Each model is retrained 5 times with different random seeds

e HIJING+Geant4 used as training data (600k events) and testing data (100k events)
e Both DDPM and GAN reproduce the data distribution where the data are abundant
e DDPM outperforms GAN in overall distribution w/ great stability and accuracy

Yeonju Go (BNL) ML4Jets @ Paris, France / 2024 Nov. 4-8th 11



Performance: Transverse Energy (0-10%)

4x4 Tower §

1x1 Tower E_§ 7x7 Tower 11x11 Tower All Towers

L 10 1x1 tower Centrality 0-10%

-©- HIJING+G4
== (GAN
108k = DDPM

1

E; (1x1 tower) [GeV]

2%x10~" 1 2 345

ML/HIJING+G4
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e HIJING+Geant4 used as training data (600k events) and testing data (100k events) _ P
e Both DDPM and GAN reproduce the data distribution where the data are abundant :;#
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Performance: Transverse Energy (0-10%)
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e Each model is retrained 5 times with different random seeds
e HIJING+Geant4 used as training data (600k events) and testing data (100k events)

e Both DDPM and GAN reproduce the data distribution where the data are abundant
e DDPM outperforms GAN in overall distribution w/ great stability and accuracy
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Performance: Transverse Energy Fluctuation (0-10%)
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Performance: Transverse Energy (40-50%)
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e DDPM outperforms GAN
= great stability, good agreement with HIJING+G4 at high probability region
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Performance: Transverse Energy (40-50%)
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e DDPM outperforms GAN
= great stability, good agreement with HIJING+G4 at high probability region
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* Non-gaussian rare tail at the high energy region — challenge to reproduce
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Trade-off between Training time and Fidelity
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e DDPM models with the higher epochs give better performance!
= put, the higher the epochs, the longer the training time
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Trade-off between Generation time and Fidelity

ML/HIJING+G4
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* DDPM models with the higher de-noising steps give better performance!
= put, the higher the de-noising, the longer the generation time
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How long does it take to simulate a large sample?

Generating time Speedup CPU/GPU
ALJING = G.EANT4 40 minutes / event 1 Single CPU
(Conventional) ; ;
DDPM 1.34 s / event ~1,800X  NVIDIA RTX A6000
0.42ms/event ~  ~5700,000X  NVIDIA RTX A6000

e GAN is faster, but the DDPM exhibits high fidelity in describing the truth ground (HIJING+GEANT4)
e DDPM provide a speedup of O(100), considering a 32-core CPU equivalent to a GPU
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Application and Future Plan

* WWe can train the model using a relatively

modest number (at the level of millions) = N

and then accelerate the production of much = 0.0 Work-in-progress. -

larger samples (at the level of billions) 2 ‘ -

| - Cluster E;>1 GeV,Cluster prob>0.1 -

0 _ | Leading Cluster E>2GeV, asym<0.5 i

7~ peak reconstructed using———p\ _ p. >4 GeV -

simulation samples generated by DDPM b/ W B

0.03 1 *+ + -

 Can DDPM describe more complex features ¥ +++++++++*++:+**~*’*¢+,,+¢*’w* A

of heavy ion collisions? 0.021 ' b “e

= Resonance, flow can be reproduced by 0.01"- -

DDPM! - -

W rk_in_ r reSS I X T T N T AT NI T T N N N A AN NN SR R
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M,, [GeV]
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Jet Background Subtraction

using CycleGAN
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Cycle-consistent GAN

* Self-supervised learning, Zebras T Horses
Unpaired image-to-image translation — |

* Minimizing cycle-consistency loss in addition to
adversarial loss

Domain A <+—» DomainB

, »“ %a*@‘hﬁ" e
g _&{ml RN - T2

Adversarial Loss
-A—B ~ B?

-B2A~A?

Cycle-consistency Loss
YA—>B—>A~A’? y horse — zebra

-B—»A—B ~B? arXiv:1703.10593
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UVCGAN

e UVCGAN (UNet Vision Transformer cycle-consistent Generative Adversarial Network)

= unpaired image-to-image translation; bridging gap between simulation and data reference
= arXiv:2303.16280 [cs.CV]

Male-to-Female Removing Glasses

input

UVCGANV2
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Jet Background Subtraction (1)

 Calorimeter 17 vs ¢ images are generated
by UVCGAN for two domains

= A domain: Pythia and HIJING, separately
- . Pythia + HIJING

* A-to-B is qualitatively described well

A

Pythia jet

GA—>B

Pythia jet + HIJING

Work-in-progress
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Jet Background Subtraction (1)

 Calorimeter 17 vs ¢ images are generated
by UVCGAN for two domains

= A domain: Pythia and HIJING, separately d
- - Pythia + HIJING input <

* A-to-B is qualitatively described well

HIJING

> Pythia jet

A

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

-0
Pythia_{j_/eﬁ/t/‘ |
GA—)B
R, Pythia jet + HIJING
5 THIJING Work-in-progress
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Jet Background Subtraction (1)

 Calorimeter 17 vs ¢ images are generated
by UVCGAN for two domains

= A domain: Pythia and HIJING, separately d
- - Pythia + HIJING input <

* A-to-B is qualitatively described well

HIJING

> Pythia jet

Pythia jet

GA—)B

Reference Pythia + HIJING

e Pythia jet + HIJING

0 S R | e
6 } A e e !
[ gl e o = L] =
5 LI Cared ol B
4 = e f
3 i T I =
2 I (

HIJING Work-in-progress
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Jet Background Subtraction (2)

 B-to-A (jet background subtraction) is also
qualitatively described well !

s, BZA 1 Pythiajet + HIJING
T HIUING Work-in-progress
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Jet Background Subtraction (2)

 B-to-A (jet background subtraction) is also
qualitatively described well ! (Input) :.

GB—>A

Pythia jet + HIJING

Work-in-progress
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Jet Background Subtraction (2)

 B-to-A (jet background subtraction) is also

qualitatively described well ! (Input) a
ks

A Background (HJING) |

— A generated by UVCGAN T i B2 N0 - -
o fakear | O

N Jets |

Gp_a
— Pythia jet + HIJING
Work-in-progress
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Jet Background Subtraction (2)

 B-to-A (jet background subtraction) is also
qualitatively described well !

(Input)

Background (HIJING)

— A generated by UVCGAN

GB—>A

AN Jets

Reference Pythia jet

Pythia jet + HIJING

Work-in-progress

Yeonju Go (BNL)
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Summary and Conclusion

e Generative Al Simulations of high energy nuclear experiments
= highly complex and computationally intensive
= pboth fidelity and speed is important
= (Generative Al can speed up and produce large amount of the heavy ion event simulations!

Phys. Rev. C 110, 034912
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Summary and Conclusion

e Generative Al Simulations of high energy nuclear experiments
= highly complex and computationally intensive
= pboth fidelity and speed is important
= (Generative Al can speed up and produce large amount of the heavy ion event simulations!

e Diffusion model (DDPM) was used to generate the whole-event, full-detector simulated
calorimeter data in high fidelity for the first time in heavy ion collisions Phys. Rev. C 110, 034912

= AN used as a reference
= DDPM outperforms GAN for scientific fidelity

= {rade-off found between training / generation duration and the quality of reproducing the rare
feature
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Summary and Conclusion

e Generative Al Simulations of high energy nuclear experiments
= highly complex and computationally intensive
= pboth fidelity and speed is important
= (Generative Al can speed up and produce large amount of the heavy ion event simulations!

e Diffusion model (DDPM) was used to generate the whole-event, full-detector simulated
calorimeter data in high fidelity for the first time in heavy ion collisions Phys. Rev. C 110, 034912

= AN used as a reference
= DDPM outperforms GAN for scientific fidelity

= {rade-off found between training / generation duration and the quality of reproducing the rare
feature

e For the first time, a self-supervised generative model is used for jet background
subtraction in heavy ion collisions; cycle-consistent GAN for image-to-image translation

= can bridge gap between the data and simulation
= first look is very promising. Stay in tune!
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Early Universe and Quark Gluon Plasma

plemperature Quark Gluon Plasma

-

Neutron stars

>

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF ‘ Baryon denS|ty
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Generative Al

FIG. 2: Three-dimensional representation of a 10 GeV e™

O Ge ne rative Ad versa ri al N etwo rks (G AN) incident perpendicular to the center of the detector.

Not-to-scale separation among the longitudinal layers is

- aCtlver used |n hlgh energy phyS|CS added for visualization purposes.
(e.q. arXiv:1712.1032, arXiv:2209.07559,
EPJC 80 (2020) 688, arXiv:2210.14245)
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Generative Al

FIG. 2: Three-dimensional representation of a 10 GeV e

O Ge ne rative Ad versa ri al N etwo rks (G AN) incident perpendicular to the center of the detector.

Not-to-scale separation among the longitudinal layers is

- aCtlver used |n hlgh energy phyS|CS added for visualization purposes.
(e.q. arXiv:1712.1032, arXiv:2209.07559,
EPJC 80 (2020) 688, arXiv:2210.14245)

e Diffusion Models: text-to-image generation in industry
(e.g. StableDiffusion, Midjourney, Dalle-2) l
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DDPM Configuration

e number of diffusion steps 1 default 8000 / variation [1000, 16000]

e variance schedule f,: default 0.1 / variation [0.02, 0.2]

 training batch size: default 128 / variation [100, 12500]
* training steps per epoch: default 2000

e epoch: default 4000 / variation [100, 4000]

 training with the Adam optimizer with learning rate 10-4
e trained with 600,000 events per each centrality bin

e tested with 100,000 events per each centrality bin

e neural network architecture (U-ResNet + Attention)

e depth/width of the model

= U-Net encoder-decoder stage, channels per stage: 32, 64, 128
each of which comprised of two ResNet blocks
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Batch Size Dependence
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e Batch size not only introduces different random seeds and but also changes
variance schedule (f,)
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