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Top quark spin

= Top quark decays before it hadronizes or spin flips
Ttop /2 D X 10275

Thad ™ 1/AQCD ~ 10_248

Tflip " ?nt/i’\ggf_-_;[) ~ 1072t Mahlon, Parke 2010

= Top polarization can be observed from the angular distribution of its decay products,
which provides us an opportunity for non-resonant new physics searches.

1 dl’ 1 _ r +1, for [t or d-quark.
fd — 5(1 —}— ‘dk COS gk) Br = ¢ —0.31, for v or u-quark.
COS fk; ' /‘ —0.41, for b-quark.

Brandenburg, Si, Uwer 2002
Spin analyzing power
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Entanglement and Bell Inequalities
with Top Quarks

= The LHC provides a unique environment to study entanglement and Bell’s inequality at
high energy

= Top quark pair production is an optimal candidate for these studies
Afik, Nova 2020
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Hadronic top polarimetry

= Semi-leptonic and hadronic channel has much higher event rate than dileptonic channel
= down-type quark is best polarimeter, but tagging it in a collider environment is challenging
= \We can use a proxy direction for down-quark

1 dry 1
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Top quark spin

Jezabek 1994
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Optimal hadronic direction

3 3 3
p(Cwhel) = g/r (14 ewne)” + 1fo (1= crner) + 3/L (1— cwne)”
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= Using a linear combination of soft jet directions as the proxy P4 Geott)
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Beyond kinematic information

= The optimal hadronic direction uses all the kinematic information
(momentum) of the top decay products. At particle-level, jets contain more
iInformation than just momentum.

Parton level T, K

Particle Jet Energy depositions
in calorimeters

Gopt = P(d = qnard|cw , {O}) qnara + p(d = Geote|ew, {O}) Gsoft

ZD, Gongalves, Kong, Larkoski, Navarro 2024
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Machine Learning Strategy

= Light jet flavor identification within top jet cone

= |[nput the jet constituent momenta and charge
iInformation for each of the subjets

= Train the neural network to identify the down-
type jet

= Interpret the neural network score as
theconditional probability of each jet being
down-type and form a new proxy direction
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Network Architecture

= \We modified based on the

Coordinates Edge Features Coordinates Edge Features Coordinates Edge Features Partl CI eNet arChlte CtUI’e by
| l | | | utilizing three separate
[ EdgeCony Block J ( EdgeConv Biock j ( EdgeCony Block J graph convolutions instead
k=8, C=1(32, 32,32 k=28, C=(32, 32, 32) k=8, C= (32, 32, 39) .
. [ of one, corresponding to

Y v v L Y L each of the jet inputs.
[ _Edgec_nn\r Block ) [ EdgeConv Block j [ _E{:lge(}_ﬂfw Block j
bkiakakal <=8 C-(ea0n 0 ke = The three graphs are then
pooled and concatenated.

( Global Average Pooling > ( Global Average Pooling ) ( Global Average Pooling )

| -] I = Additional features for the
- [ EE— j overall top jet can also be
AddifonsiFesiiies “\_ 128Relu, [Iﬂm"h“-' fed into the linear layers.
( Fully Connected j Qu, Gouskos 2019
i See also: Gong et al. 2022
( oo ) Bogatskiy, Hoffman, Miller, Offermann 2022
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Input features

Variable Detinition
A difference in pseundorapidity between the
particle and the top jet axis
L I:_I..l_ ] . e 3 1 i J- ; : = he i
b difference in azimuthal angle between the
particle and the top jet axis
ATy difference in psendorapidity between the
particle and the subjet axis
A difference in azimuthal angle between the
A, lift thal angle bet th
particle and the subjet axis
log pr logarithm of the particle’s pr
log K logarithm of the particle’s Energy
iq electric charge of the particle
1sklectron if the particle 15 an electron
1zMuon if the particle 13 a muon
1IsPhoton if the particle is a photon

15Charged Hadron
isMeuntralHadron

if the particle 15 a charged hadron
if the particle is a neutral hadron

Each particles within the jets will be
associated with two sets of coordinates:
the n and ¢ with respect to the top jet
axis, or with respect to the individual
subjet axis.

The log-normalized energy and
transverse momentum of each
particles.

Basic particle identification information.

One could try to include more precise
PID, separating the charged hadrons.
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1-False Positive Rate

Performance on jet flavor identification

1.0 -
0.8 1
= The ROC curve of the network trained and
- tested on the unpolarized top data.
= “kinematics” curve is the baseline
B constructed using a fully connected DNN
' with jet momenta input.
----- DNN kin (AUC=0.59) \
0.27 ..... GNN kin (AUC=0.64) R
——- GNN kin+charge (AUC=0.66) .
00l — GNN kin+charge+PID (AUC=0.73) "}
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Spin correlation (f) based on cuts

—— tg (GNN kin+charge+PID) g;gt ﬁé}l;ﬂt
0.9t — I, (GNN kin+charge+PID)
e —== ty (DNN kin) DNNgg—100% 0.622 0.625
—== t, (DNN kin)
0.8 GNNEH:IDU% 0.678 0.685
GNNgg—s50% 0.751 0.758
0.7
- GNNgg_20% 0.863  0.869
o6k )
14— - - - - - - = We can put cuts on the neural
13 Sesel_ === 4 network scores to significantly
= —— - . .
13 Rabt T t improve the spin correlation.
e e = We can apply large cuts on the events
LS 03 04 o5 06 07 08 09 10 as long as we still have a larger cross

Efficiency section than dileptonic tt.

ZD, Goncalves, Kong, Larkoski, Navarro 2024
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Kaon/Pion discrimination

Performance can be further improved significantly with

Kaon/Pion discrimination

They are not well distinguished at the LHC, but can be

iImproved with future timing detector

In principle, we can consider imperfect Kaon/Pion label

Theoretical challenge of handling non perturbative effects

of hadronization
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Beyond polarimetry

= Doing light quark jet tagging within the top jet can
help us understand more about the light quarks
themselves, not just about top quarks

= The model’s performance depends on the
generation of quarks

= We could also include additional information such
as charm tagging

= A well tuned model may enable us to do a direct

1 - False Positive Rate

measurement on Cabbibo angle_ 0.2 ——- GNN kin+charge+PID First (AUC=0.62)
—=—- GNHN kin+charge+PID Second (AUC=0.81)
—— GNN kin+charge+fullPID First (AUC=0.71) .\
0.0 4 =™ GNN kin+charge+fullPID Second (AUC=0.92)
I I ! ! ! !
0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate
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Summary and discussion

= We can train a machine learning model on identifying the light jet flavor
within the top jet and use it to improve the spin analyzing power of the
hadronic top.

= u - d discrimination is challenging in general but can be improved in
tagged top jet.

= With the inclusion of variables beyond kinematic information in the
Input, we can improve the spin analyzing power compared to the
direction constructed using only kinematics.

= The neural networks also provides a way to make selections on the
events to improve the spin analyzing power, which means better top
sSpin measurements.



Back up
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Data preparation

= \We generate 14TeV PP — tt — f_I/Qij events using MG5, with no
cuts except for py; > 200 GeV.

* Three sets of samples where the top quark is unpolarized, left hand polarized
and right hand polarized in the tt rest frame.

= Parton shower and hadronization are done with PYTHIAS8 without MPI.

= |dentify the top jet using CA algorithm with R = 1.5, and p; > 250 GeV. And
decluster following the algorithm to find the subjets.

= We match the hadron level jets with true parton level momenta, by using the
smallest AR between the two.



Analytical results

p(({—) Qha.rd‘CW: Qn,ha Nha Qn,s:

N,) =

1

P(Qn,h |u—>Qhard;N h,)
P(Qrn|d—qnara,Na)
1

p(d = Gnard|ew) + p(u = ghara|cw)

X

T od- i) e
)-

X p(d — Qha.rd|CW

K=0.3, 02N2=1, Ny + N =20
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DNN

Using Jets momenta as input
Total of 20k trainable parameters

= Trained on 200k unpolarized samples
= Tested on 50k right-hand and left-hand 8
polarized samples.
E -
=
g4
2 -
_I|

0 . . :
0.0 0.2 0.4 0.6 0.8 1.0
DNN Score
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GNN

= Total of 77k trainable parameters

= Trained on 200k unpolarized samples

» Tested on 50k right-hand and left-hand
polarized samples.
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