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Probabilistic Learning

Data Target Prediction

Qj—»g—»

(images, audio, (label, class,
signal, ...)



http://introtodeeplearning.com/2021/slides/6S191_MIT_DeepLearning_L7.pdf

Learning Probabilistic Outputs @&

=
p—
N
|
L3
Q
S
&
~—

p(y = “dog” | )

Probability distribution over
discrete class categories

. ————— —

ML4Jets 2024 http://introtodeeplearning.com/2021/slides/6S191 MIT DeeplLearning L7.pdf 3


http://introtodeeplearning.com/2021/slides/6S191_MIT_DeepLearning_L7.pdf

Learning Discrete Class Targets

Classification

Why?

o 0 T y ~ Categorical(p)
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Learning Continuous Class Targets¢

Regression Why!?
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Likelihood vs Confidence ap

/I\ Do not mistake likelihood (probability) for model confidence! /I\
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Likelihood vs Confidence ap

/I\ Do not mistake likelihood (probability) for model confidence! /I\
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Likelihood vs Confidence ap

/I\ Do not mistake likelihood (probability) for model confidence! /I\

Expectation: Bea!ity: '
Training on a your dataset Testing in reali
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Likelihood vs Confidence ap

/I\ Do not mistake likelihood (probability) for model confidence! /I\

The output likelihoods will be unreliable if the input is unlike anything during training
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Types of Uncertainty

Aleatoric Uncertainty

e Describes the confidence in P
the input data

e Large when input data is noisy 21

e Cannot be reduced by simply
adding more data

0 -
Epistemic Uncertainty
e Describes the confidencein ] ------Z
the prediction g —— Mean prediction
e L arge when insufficient 47 —=- Epistemic uncertainty
training data 4 ,::7 —-—=- Total ur.1certainty.
e Can be reduced by adding il —— Aleatoric uncertainty

T T T T

more data -25 -20 -15 -1.0 -05 00 05 1.0 15
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Estimating epistemic uncertainty

e Aleatoric uncertainty can be learned directly using neural networks
e Epistemic uncertainty is much more challenging to estimate

Q: How can a model understand when it doesn’t know the answer?

One solution...

Deterministic NN Bayesian NN

Learn a posterior over
A weights P(W|X,Y)

P(W'X, Y) — P(Y|X7W)P(W)

P(Y|X)

Learn fixed set of weights W Problem: Intractable! Needs approximations...
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Approximations via Sampling

Evaluate T stochastic forward passes using different samples of weights (W,}{_,

e Dropout as a form of stochastic e Ensemble of T independently trained
sampling models, each learning a unique
Zy ¢ ~ Bernoulli(p) VweW W, = train(f; X,Y)

TR o 7 gl 7 gl !

O
Epistemic uncertainty: T T T T T T ST T TS EEEEEEEEEm
- - I Downsides of Bayesian Deep Learning
e Slow: Requires running network T times for each input
e Memory: Stores T copies of the network in parallel
e Efficiency: Sampling hinders real-time on edge devices
e Calibration: Sensitive to prior and often over-confident

T
var(P|X) == Y F0? — E(7|x)
t=1

T
where E(Y|X) = %Z fX|w,)
t=1
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Uncertainty Estimation: Sampling @&
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Q: Can we directly learn the parameters defining this likelihood distribution?
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Evidential Deep Learning (EDL)

https://arxiv.org/abs/1806.01768

Treat learning as an evidence acquisition process, where more
evidence from the data leads to increased predictive confidence
e Takes a Theory of Evidence perspective: softmax is interpreted as the
parameter set of a categorical distribution which is replaced with the
parameters of a Dirichlet density (a factory of softmax point estimates)

Low uncertainties — High confidence

o

H

High aleatoric (data) uncertainty

High epistemic (model) uncertainty

M

M

Goal: train a neural network to learn these type of evidential distributions
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EDL for Regression

Key point to remember: Sampling from an evidential
distribution yields individual new distributions over the data

y ~ Normal(ju, 0?) 2,

Target Likelihood  Distribution
Labels function  parameters

Assume the distribution parameters are not
known, place priors over each and

probabilistically estimate! 24|

T 2
i ~ Normal(vy, o?v=1)

0? ~T Yo, B)

2 T
i, 0° ~ NormallnvGamma(~y, v, a, 3)

Distribution Evidential Prior

parameters
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Evidential distribution
T |

(7. A a,8) = (0, 2, 0.3, 0.3) A

Likelihood function

Y

Amini+ NeurlPS 2020

Decreasing Variance




EDL for Classification vc<{.--.K}

Key point: Sampling from an evidential distribution yields
individual new distributions over the data

: K=3 a=(999
y ~ Categorical(p) 1.0 ( )
- - p= 0.0
Class Likelihood  Distribution ol
Labels function parameters

0.5
P 0.5
0.0

(probabilities)

p ~ Dirichlet(a) g

p=|0.33

Distribution Evidential 0.33
parameters Prior

Choice of evidential distributions is 0.1
closely related to conjugate priors g [fij;]
in the context of Bayesian inference

ML4Jets 2024 Sensoy+ NeurlPS 2018 16




EDL Model and Training

Model Optimization
Train the network to output the parameters Perform multi-objective training:
of an evidential distribution:
Maximize Minimize
Data, =’ ‘ g
- Classification model fit <:| incorrect evidence
* Timeseries (87
* Feature Vector
Evidential / p(y|@) p(@lm) d6 ly — E[u][ - ©(m)
Neural Network POt ‘e '
likelihood evidential errors predicted
data prior evidence

N N
For classification: L(©) = Z Li(©)+ X\ ZKL[D(pﬂ&,;) | D(p;|1)]
§—=] m— )

i
Penalty for assigning large confidence to
uncertain samples
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EDL Loss for Classification

N N
L©)=> Li(O)+ > KL[D(pilés) || D(pi|1)]
=] m—

=1
Penalty for assigning large confidence to
uncertain samples

Reconstruction Loss
a; =y, +(1-y)eqy arethe Dirichlet parameters after removal of
non-misleading evidence from predicted parameters &;
for sample i

D(pz-|1)] is the uniform Dirichlet density with zero total evidence
(i.e. total uncertainty u = 1)

KL[D(p;|&;) || D(p;i|1)] term used to regularize our predictive distribution
by penalizing divergences from the “l don’t know”
state that do not contribute to the data fit

ML4Jets 2024 18



Forming EDL Predictions

For classification:

Data, I’

* Images
* Timeseries
» Feature Vector

Output Dirichlet
layer  Hidden layerl Hidden layer n layer  parameters

Once the network learns the parameters a, its mean, can be taken as an estimate of the K class probabilities

De = ac/s‘
The epistemic uncertainty u on the prediction is computed as the inverse of total evidence or|Dirichlet strength S
u=K/S| where S = Zﬁil Q.

EDL Uncertainty can be easily integrated with K additional parameters and a new loss

ML4Jets 2024 Amini+ NeurlPS 2020, Sensoy+ NeurlPS 2018 19



EDL Toy Learning Problems ag

——  Qut-of-distribution ——

150 — .
100

&)
o

0 20 40 60 80 100 120 140 160 180
Rotation Angle

|
|
|
|
!
|
4

6 4 2 0 2 4 6

F JYYNNSNSNSNS—=errrrr ]

Data No Data Ground Truth Prediction Uncertainty

ML4Jets 2024 Amini+ NeurlPS 2020, Sensoy+ NeurlPS 2018 20



EDL Toy Learning Problems ag

——  Qut-of-distribution —— Out-of-distribution
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Builds upon XAl results from arxiv: 2210.04371 A Detailed Study of Interpretability of Deep Neural
Published in 2023 Mach. Learn.: Sci. Technol. 4 035003 Network based Top Taggers

Ayush Khot, Mark S. Neubauer, and Avik Roy'

Department of Physics & National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign

E-mail: akhot2@illinois.edu, msn@illinois.edu, avroy@illinois.edu

ABSTRACT: Recent developments in the methods of explainable Al (XAI) allow researchers
to explore the inner workings of deep neural networks (DNNs), revealing crucial information
about input-output relationships and realizing how data connects with machine learning
This work was supported by the models. In this paper we explore interpretability of DNN models designed to identify jets
FAIR Data program of the DOE coming from top quark decay in high energy proton-proton collisions at the Large Hadron
ASCR under contract number Collider (LHC). We review a subset of existing top tagger models and explore different
DE-SC0021258, DOE OHEP under duantitative methods to identify which features play the most important roles in identifying
contract number DE-SC0023365,
and NSF subaward from award
MPS/PHY-2117997

Ayush Khot Avik Roy Mark Neubauer

the top jets. We also investigate how and why feature importance varies across different
XAI metrics, how correlations among features impact their explainability, and how latent

space representations encode information as well as correlate with physically meaningful

quantities. Our studies uncover some major pitfalls of existing XAl methods and illustrate
Dewen Zhong Xiwei Wang how they can be overcome to obtain consistent and meaningful interpretation of these
P - models. We additionally illustrate the activity of hidden layers as Neural Activation Pattern
o‘;‘,\"“ 4"0/,-,\. (NAP) diagrams and demonstrate how they can be used to understand how DNNs relay
Q)\k 4 % information across the layers and how this understanding can help to make such models
y Ag;;;';ft'lf;s““"..‘.‘. ‘i;’a':‘:‘:‘:rlg % significantly simpler by allowing effective model reoptimization and hyperparameter tuning.
A3D3 B These studies not only facilitate a methodological approach to interpreting models but
damain S § U.S. DEPARTMENT OF Office of also unveil new insights about what these models learn. Incorporating these observations
‘""’"“":" . :""’“‘ 4}5 EN ERGY Science into augmented model design, we propose the Particle Flow Interaction Network (PFIN)
rtificia

Intelligence

model and demonstrate how interpretability-inspired model augmentation can improve top
FAIR4ZHEP
lgh Energy Phys\

Ldvets 2024 see XAl talk at Unc. Challenge Workshop
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Uncertainties in Jet Tagging - |

e Goal: distinguish top-quark jets (label=1) from QCD jets (label=0)
QCD jets

(background)

e Use XAl-Inspired
Particle Flow

Interaction Network 2000 < high confidence

Simulated dataset with 2M jets available at: zenodo: 2603256

140000

(PFIN) top tagger

Q: To what extent can “*
a jet tagging model be

confident in its 3‘:3
predictions? (\.\ )
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Model shows

for most jets

Large uncertainties
dominated by
misclassified jets!
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o 0.0
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Uncertainty

Pred. Label + Unc

156524

T

Labels

Increasing
uncertainty for
misclassified jets!
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https://zenodo.org/record/2603256
https://iopscience.iop.org/article/10.1088/2632-2153/ace0a1
https://iopscience.iop.org/article/10.1088/2632-2153/ace0a1

Who Gets Largest Uncertainties? @&

Our studies of XAl using Principal Component Analysis on the classifier model latent
spaces show expressive discrimination (see also XAl talk at Unc. Challenge Workshop)

And we see that samples with large EDL-based uncertainty (> 0.8) lie in the overlap
region, where discrimination is the hardest (expected “l don’t know” from the model!)

0.08
background 0.030 background | background
0.07 B signal B signal 0.04{ ™= signal
o —] FP (unc.>0.8) 0.025 —1 FP (unc.>0.8) [—1 FP (unc.>0.8)
§ 0.06 1 FN(unc. > 0.8) — FN (unc. > 0.8) 1 FN (unc.>0.8)
Y
o
© 0.05 0.020 0.03
Q
g 0.04
. 0.015
£ 0.02
c 0.03
2 0.010
© 0.02
o 0.01
0.01 0.005
0.00- 0.000 0.00

-10
Zpc, 0 Zpc, 1
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Who Gets Largest Uncertainties?...&

4
154
10{ . _ - 2
S g
Q.
N | Q
5 N 0
& background background
signal Y signal
FP (unc.>0.8) FP (unc.>0.8)
—51 FN (unc.>0.8) FN (unc. > 0.8)
-10 0 10 20 30 -10 O 10 20 30
ch, 0 ch, 0
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Uncertainties in Jet Tagging -

e PFIN model is applied to a multi-class problem with JetNet Dataset: distinguishing

20000 A

17500 1

15000

12500

10000

7500

5000 1

2500 4

______________________________________________________________________________________________

- E.g. gluon jets have more constituents w/ more
uniform energy fragmentation and are wider
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4]
/

\

jets from: light quarks (0), gluons (1), top quarks (2), W bosons (3),

Bimodal distribution
with a large peak at
large uncertainties
dominated by
correctly classified
quark and gluon jets

These jets have
similar physical
characteristics, and
are hard** to tell apart

Pred. Label + Unc

10

Heavier jets tend to have
lower uncertainties
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EDL Applied to Anomaly Detection
Maritime Anomaly Detection

Most ships are equipped with
automatic identification system

Normal Trajectories
Anomalous Trajectories

e (AIS) transponders to provide their
S s static and dynamic information
Q .
% Vessels’ location, navigational
E " status, and voyage-related
T information can be used for

e collision-avoidance mechanisms
— d _ e vessel tracking

5414 . YRR T L S SRS, ALZei "" =¥ e detection of loss of AIS signal

’ ey ' and anomalous trajectories

117 11.8 119 120 121 122 12.3 |High epistemic uncertainty from EDL is
Longitude [deg] used to identify anomalous trajectories

ML4Jets 2024 https://arxiv.org/pdf/2107.01557v1.pdf 2
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Maritime Anomaly Detection

60-90 passenger vessels
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. 60-90 passenger vessels
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EDL for Anomalous Trajectory Detection

High epistemic uncertainty may represent anomalous trajectory.
However, different output features are predicted with different
uncertainties, so comparing segments with a set uncertainty
threshold might not be a good idea

Thus, a trajectory segment is defined as anomalous if the predicted

sequences of the segment have an abrupt transition in their

epistemic uncertainties . d
min, (var[ud))

< Oar
d | max;(var[ug])
This selects the feature d and output sequence j with the
minimum normalized epistemic uncertainties. If this value is
below &,., then the segment is considered as anomalous

A vessel’s trajectory is termed as anomalous if it contains one or
more anomalous segments

httos://arxiv.org/pdf/2107.01557v1.pdf 28



https://arxiv.org/pdf/2107.01557v1.pdf

EDL for Anomaly Detection in Jets §

Q: What happens if the models encounter jets that they have

not “seen” before (i.e. trained on)? C‘%

e Anomaly detection with EDL can be tested by
withdrawing some jet classes from training dataset

o In-Distribution (ID): jets the model is trained on

o Out of Distribution (OOD): jets withdrawn from training

e Models trained with EDL tend to assign a large
“uncertainty” score to anomalous (OOD) classes

?
o Model saying “hmmm...I1 don’t know” [&°7)

Challenge: how do we distinguish “hard-to-tell” jets from
“anomalous jets” using a single uncertainty metric?

ML4Jets 2024
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Comparing with Ensemble Methods @

e Comparison can be done using ROC

o A larger AUC would indicate a better
performing model

e Key metrics:

o OOD Detection Rate: what fraction of
OOD samples are correctly identified

o ID Mistag Rate: what fraction of ID
samples are incorrectly identified

OO0D Detection Rate

EDL shows equivalent
performance to ensemble methods
and better than MC Dropout

ML4Jets 2024

10 4
038 4
064
04
MC DropOut
Ensemble
il - EDL (nominal)
—— EDL{0.1)
—— EDL-CT (0.1)**
00| —— EDL-CT (0.5)**
\
00 02 04 06 08 10

ID Mistag Rate

_______________________________________________________

i** EDL-CT is a “Confidence Tuned” variant of the EDL method where i
' the model is first allowed to converge w/o any annealing and then !
! the parameters are tuned by retraining the model with annealing



Lessons Learned and Future Work ¢

Evidential Deep Learning (EDL) involves training a deterministic neural network to
place uncertainty priors over the predictive distribution, requiring only a single forward
pass to estimate uncertainty

The EDL approach to uncertainty estimation proved to be well calibrated on the Top
tagger and JetNet datasets and was capable of detecting OOD samples
e We have also studied EDL performance on the Jet Class dataset (not in this talk)

EDL shows equivalent performance to ensemble methods and better than MC Dropout

Some next steps:

e Bind in together with One Class Classifier Methods (OCC), as occ
the current approach only works when at least two training /\
classes exist

e Differentiate between uncertain ID samples and anomalous (OOD)
samples OCC trained to

project in-distribution

e Apply EDL methods to event-level Anomaly Detection to improve | events withina
traditional/SOTA methods (e.g. EDL-enhanced auto-encoders) hypersphere of

radius ¢
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