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Image from https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
Trains a neural network v,(x | 7) to regress a conditional vector field u(x | x;), thereby learning the

vector field u,(x)
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Dataset: LHCO dataset

 Data: 1M QCD di-jet events as background and different amounts of signal
events.

. The resonant variable is m;;, and the features x are [m Jo My, —my,
« The SR: 3.37TeV <m;; < 3.7TTeV.
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The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics : arXiv:2101.08320
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Timing Comparison

Method Generative Model Timing
CATHODE/ANODE Normalizing Flows 3 hours per SR
CATHODE/ANODE Flow Matching 30 mins per SR

CURTAINS4F4 Normalizing Flows 3 hogrrsn Esgspeef‘sc’ge') ¥

RAD-OT Optimal Transport 10 mins per SR

SIGMA (ours) Flow Matching 30 mins (training) +

30 secs per SR
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How to select best interpolated model?

Open question!

* The SIC is very sensitive to

bad background templates.

*\We suggest doing signal
Injection tests, similar to
CMS or ATLAS, or adding
artificial gaussian signals to
find the best interpolation.
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 SIGMA re-uses a single generative model trained on all of the data, with a
subsequent interpolation of its parameters from SB into SR.

* Reduces the computational cost of SIGMA significantly relative to previous
approaches such as ANODE/CATHODE, while preserving the high quality of
their background templates and signal sensitivity.

* Given that there was still a small performance gap between the previous,
expensive interpolation method (masking out the CR) and SIGMA, on could

explore further possible improvements:

o Using diffusion models instead of flow-matching.

o Performing some kind of non-linear interpolation using more than two
mass points in the control region.
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