

ML4Jets2024

07-11-2024

Based on arXiv:2410.20537

Ranit Das and David Shih

RUTGERS

Key Steps:

ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: arXiv:2203.09470v3 R-ANODE: <u>arXiv:2312.11629</u>

Key Steps:

 Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

ANODE: arXiv:2001.04990v2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u> R-ANODE: <u>arXiv:2312.11629</u>

Key Steps:

- Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.
- For each SR, generate a background template from SB and interpolated into SR.

ANODE: arXiv:2001.04990v2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u> R-ANODE: <u>arXiv:2312.11629</u>

Key Steps:

- Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.
- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).

ANODE: arXiv:2001.04990v2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u> R-ANODE: arXiv:2312.11629

Key Steps:

 Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

This talk!

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).

ANODE: arXiv:2001.04990v2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u> R-ANODE: arXiv:2312.11629

Key Steps:

 Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

This talk! **Problem: Computationally expensive!**

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).

ANODE: arXiv:2001.04990v2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u> R-ANODE: arXiv:2312.11629

- For each SR, a separate generative model is re-trained on almost the entire data, by masking out that SR.
- This makes the method computationally expensive for datasets with many SRs!

Method	Generative Model	Timing
CATHODE/ ANODE	Normalizing Flows	3 hours per SR

• CURTAINs4F4 trains a base model on entire dataset. For each SR a lighter model is trained on shorter sidebands. (See <u>arXiv:2305.04646</u>)

- CURTAINs4F4 trains a base model on entire dataset. For each SR a lighter model is trained on shorter sidebands. (See <u>arXiv:2305.04646</u>)
- RAD-OT just uses Optimal Transport instead of a generative model for each SR. (See arXiv:2407.19818

- CURTAINs4F4 trains a base model on entire dataset. For each SR a lighter model is trained on shorter sidebands. (See <u>arXiv:2305.04646</u>)
- RAD-OT just uses Optimal Transport instead of a generative model for each SR. (See <u>arXiv:2407.19818</u>).

Method	Generative Model	Timing
CATHODE/ANODE	Normalizing Flows	3 hours per
CURTAINS4F4	Normalizing Flows	3 hours (ba model) + 7 mins per
RAD-OT	Optimal Transport	10 mins per

- CURTAINs4F4 trains a base model on entire dataset. For each SR a lighter model is trained on shorter sidebands. (See <u>arXiv:2305.04646</u>)
- RAD-OT just uses Optimal Transport instead of a generative model for each SR. (See arXiv:2407.19818).
- RAD-OT is fast, but compromises in signal sensitivity.

- CURTAINs4F4 trains a base model on entire dataset. For each SR a lighter model is trained on shorter sidebands. (See <u>arXiv:2305.04646</u>)
- RAD-OT just uses Optimal Transport instead of a generative model for each SR. (See arXiv:2407.19818).
- RAD-OT is fast, but compromises in signal sensitivity.

TRANSIT: A new method (next talk by Ivan)

• We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.

• We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.

- We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.
- For each SR, we interpolate the parameters of this model from nearby SB.
- Background template for all SRs are generated from a single trained model (no other training required).

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion arXiv:2209.15571: Building Normalizing Flows with Stochastic Interpolants

Known Base Distribution

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion arXiv:2209.15571: Building Normalizing Flows with Stochastic Interpolants

Known Base Distribution

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion arXiv:2209.15571: Building Normalizing Flows with Stochastic Interpolants

Unknown Data Distribution

Known Base Distribution

vector field $u_t(x)$

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion arXiv:2209.15571: Building Normalizing Flows with **Stochastic Interpolants**

Unknown Data

Image from https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html Trains a neural network $v_{\theta}(x \mid t)$ to regress a conditional vector field $u_t(x \mid x_1)$, thereby learning the

m

Conditional features

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \\ \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$

m

Conditional features

NERF: arXiv:2003.08934

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \\ \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1))\right)$$

Conditional features

NERF: arXiv:2003.08934

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \\ \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1))\right)$$

Conditional features

NERF: arXiv:2003.08934

Input features

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \\ \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$

m

Conditional features

NERF: arXiv:2003.08934

Input features

• $v_{\theta}^{\text{int}}(x \mid t, m) = \xi * v_{\theta}^{\text{data}}(x \mid t, m_1) + (1 - \xi) * v_{\theta}^{\text{data}}(x \mid t, m_2)$

m

$$\gamma_i^{\text{int}}(x, m, t) = \xi * \gamma_i(x, m_1, t) + (1 - \xi) * \gamma_i(x, m_1, t)$$

$$\gamma_i^{\text{int}}(x, m, t) = \xi * \gamma_i(x, m_1, t) + (1 - \xi) * \gamma_i(x, m_1, t)$$

$$\gamma_c^{\text{int}}(m, t) = \xi * \gamma_c(m_1, t) + (1 - \xi) * \gamma_c(m_2, t)$$

Dataset: LHCO dataset

- Data: 1M QCD di-jet events as background and different amounts of signal events.
- The resonant variable is m_{JJ} , and the features x are $[m_{J_1}, m_{J_2} m_{J_1}, \tau_{21}^{J_1}, \tau_{21}^{J_2}, \Delta R]$
- The SR : $3.3TeV < m_{II} < 3.7TeV$.

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics : arXiv:2101.08320

$$N_{sig} = 3000$$

- The model trained on data, v_{θ}^{data} learns the signal.
- The previous interpolation method $v_{
 ho}^{\sf CF}$. and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal

lts

DO

$$N_{sig} = 3000$$

- The model trained on data, v_{θ}^{data} learns the signal.
- The previous interpolation method $v_{
 ho}^{\sf CR}$. and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal

- The model trained on data, v_{θ}^{data} learns the signal.
- The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal

- The model trained on data, v_{θ}^{data} learns the signal.
- The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal

- ΔR is strongly correlated with *m*.
- • v_{θ}^{int} (context) learns this better than v_{θ}^{int} (linear).

- 14
- 12 -
 - 10
 - 8 <mark>S</mark>
 - 6
 - 4

 - 2

 $N_{sig} = 1000$

• v_{θ}^{data} has worse performance ¹⁴ since it learns the signal. ¹²

10

- 8 SC
 - 6

4

2

 $N_{sig} = 1000$

• v_{θ}^{data} has worse performance	14
since it learns the signal.	12
• v_{θ}^{CR} is slow but has the best	10
performance.	⁸ SC

 $N_{sig} = 1000$

• v_{θ}^{data} has worse performance		14
since it learns the signal.		12
• v_{θ}^{CR} is slow but has the best		10
performance.	<u>C</u>	8
• v_{θ}^{int} (context) is much faster and	0)	6
has performance similar to v_{θ}^{CR} .		4

 $N_{sig} = 1000$

• v_{θ}^{data} has worse performance	14
since it learns the signal.	12
• v_{θ}^{CR} is slow but has the best	10
performance.	$\frac{O}{10}$ 8
• v_{θ}^{int} (context) is much faster and	6
has performance similar to v_{θ}^{CR} .	Л
• v_{θ}^{int} (context) does better than	4
v_{θ}^{int} (linear)	2

 $N_{sig} = 1000$

- • v_A^{data} has worse performance since it learns the signal.
- v_{A}^{CR} is slow but has the best performance.
- v_{θ}^{int} (context) is much faster and has performance similar to v_{θ}^{CR} . • v_{θ}^{int} (context) does better than v_{θ}^{int}
 - (linear)

2

0

SIC at 0.001 FPR

12

10

Timing Comparison

Method	Generative Model	Timing
CATHODE/ANODE	Normalizing Flows	3 hours per SR
CATHODE/ANODE	Flow Matching	30 mins per SR
CURTAINS4F4	Normalizing Flows	3 hours (base model) + 7 mins per SR
RAD-OT	Optimal Transport	10 mins per SR
SIGMA (ours)	Flow Matching	30 mins (training) + 30 secs per SR

How to select best interpolated model?

How to select best interpolated model? **Open question!** 12

• The SIC is very sensitive to bad background templates.

10 SIC at 0.001 FPR 8 6

2

0

How to select best interpolated model? **Open question!** 12

- The SIC is very sensitive to bad background templates.
- •We suggest doing signal injection tests, similar to CMS or ATLAS, or adding artificial gaussian signals to find the best interpolation.

10 SIC at 0.001 FPR 8 6 2

0

subsequent interpolation of its parameters from SB into SR.

• SIGMA re-uses a single generative model trained on all of the data, with a

- subsequent interpolation of its parameters from SB into SR.
- their background templates and signal sensitivity.

• SIGMA re-uses a single generative model trained on all of the data, with a

 Reduces the computational cost of SIGMA significantly relative to previous approaches such as ANODE/CATHODE, while preserving the high quality of

- subsequent interpolation of its parameters from SB into SR.
- their background templates and signal sensitivity.
- explore further possible improvements:

• SIGMA re-uses a single generative model trained on all of the data, with a

 Reduces the computational cost of SIGMA significantly relative to previous approaches such as ANODE/CATHODE, while preserving the high quality of

• Given that there was still a small performance gap between the previous, expensive interpolation method (masking out the CR) and SIGMA, on could

- subsequent interpolation of its parameters from SB into SR.
- their background templates and signal sensitivity.
- explore further possible improvements:

Using diffusion models instead of flow-matching.

• SIGMA re-uses a single generative model trained on all of the data, with a

 Reduces the computational cost of SIGMA significantly relative to previous approaches such as ANODE/CATHODE, while preserving the high quality of

• Given that there was still a small performance gap between the previous, expensive interpolation method (masking out the CR) and SIGMA, on could

- subsequent interpolation of its parameters from SB into SR.
- their background templates and signal sensitivity.
- explore further possible improvements:
 - Using diffusion models instead of flow-matching.
 - mass points in the control region.

• SIGMA re-uses a single generative model trained on all of the data, with a

 Reduces the computational cost of SIGMA significantly relative to previous approaches such as ANODE/CATHODE, while preserving the high quality of

• Given that there was still a small performance gap between the previous, expensive interpolation method (masking out the CR) and SIGMA, on could

• Performing some kind of non-linear interpolation using more than two

