
Ranit Das and David Shih

SIGMA: Single Interpolated 
Generative Model for Anomalies

Based on arXiv:2410.20537

ML4Jets2024
07-11-2024

1

https://arxiv.org/abs/2410.20537


Data Driven Resonant Anomaly 
Detection with background interpolation

SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Data Driven Resonant Anomaly 
Detection with background interpolation

• Define different Signal Regions(SR) and 
Side-Band Regions(SB) using a resonant 
feature m. 

SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Data Driven Resonant Anomaly 
Detection with background interpolation

• Define different Signal Regions(SR) and 
Side-Band Regions(SB) using a resonant 
feature m. 

• For each SR, generate a background 
template from SB and interpolated into SR.

SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Data Driven Resonant Anomaly 
Detection with background interpolation

• Define different Signal Regions(SR) and 
Side-Band Regions(SB) using a resonant 
feature m. 

• For each SR, generate a background 
template from SB and interpolated into SR.

• Distinguish between data and background 
template using classifier (like CATHODE), 
or density estimators (like ANODE, R-
ANODE).

SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Data Driven Resonant Anomaly 
Detection with background interpolation

• Define different Signal Regions(SR) and 
Side-Band Regions(SB) using a resonant 
feature m. 

• For each SR, generate a background 
template from SB and interpolated into SR.

• Distinguish between data and background 
template using classifier (like CATHODE), 
or density estimators (like ANODE, R-
ANODE).

This talk! SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Data Driven Resonant Anomaly 
Detection with background interpolation

• Define different Signal Regions(SR) and 
Side-Band Regions(SB) using a resonant 
feature m. 

• For each SR, generate a background 
template from SB and interpolated into SR.

• Distinguish between data and background 
template using classifier (like CATHODE), 
or density estimators (like ANODE, R-
ANODE).

This talk! SB SBSR

ANODE: arXiv:2001.04990v2 
CATHODE: arXiv:2109.00546v3

CURTAINS: arXiv:2203.09470v3 
R-ANODE: arXiv:2312.11629


2

Problem: Computationally expensive!

Key Steps:

https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/2312.11629


Background Template generation is 
computationally expensive!

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

3



Background Template generation is 
computationally expensive!
• For each SR, a separate 

generative model is re-trained 
on almost the entire data, by 
masking out that SR.

• This makes the method 
computationally expensive for 
datasets with many SRs!
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Method Generative 
Model Timing
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Normalizing 
Flows 3 hours per SR
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TRANSIT: A new method (next talk 
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SIGMA: Single Interpolated Generative Model for Anomalies

• We train a single generative model, 
conditioned on the resonant 
feature m, on the entire dataset 
including signal.

• For each SR, we interpolate the 
parameters of this model from 
nearby SB.

• Background template for all SRs 
are generated from a single trained 
model (no other training required).

Interpolate parameters from 
Side Bands (SB)
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Generative model: Conditional Flow-matching (CFM)

arXiv:2210.02747: Flow Matching for Generative Modeling
arXiv:2312.00123: Flow Matching Beyond Kinematics: Generating Jets 
with Particle-ID and Trajectory Displacement Information

 

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation 
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Generative model: Conditional Flow-matching (CFM)

Known

Base 
Distribution

Unknown

Data 
Distribution

Trains a neural network  to regress a conditional vector field , thereby learning the 
vector field   

vθ(x | t) ut(x |x1)
ut(x)

t

Image from https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

arXiv:2210.02747: Flow Matching for Generative Modeling
arXiv:2312.00123: Flow Matching Beyond Kinematics: Generating Jets 
with Particle-ID and Trajectory Displacement Information

 

arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation 
with Flow-Matching and Diffusion 
arXiv:2209.15571: Building Normalizing Flows with 
Stochastic Interpolants

6

dxt

dt
= ut(xt)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2312.00123
https://arxiv.org/abs/2310.00049
https://arxiv.org/abs/2209.15571


Architecture
7



Architecture

ResNet
Block

Linear

ResNet
Block

MLP

Input

Frequency Embedding

ResNet vdataθ
7



Architecture

ResNet
Block

Linear

ResNet
Block

MLP

Input

Frequency Embedding

ResNet

Conditional features

vdataθ
7



Architecture
To learn the full data distribution 
optimally, including the more 
localized, higher frequency 
modes corresponding to signal, 
we found that a frequency 
embedding for m was 
beneficial.
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α(m) = (sin(20πm), cos(20πm), …,

sin(2L−1πm), cos(2L−1πm))

Conditional features

β(t) = (sin(πt), cos(πt), …,
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NERF: arXiv:2003.08934
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Conditional features Input features

Conditional 
embedding γc
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β(t) = (sin(πt), cos(πt), …,

sin((L′ + 1)πt), cos((L′ + 1)πt))

vdataθ
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Interpolation using SIGMA
•  
 
 
   
 

vint
θ (x | t, m) = ξ * vdata

θ (x | t, m1) + (1 − ξ) * vdata
θ (x | t, m2)

vint
θ (linear)vdata

θ (x | t, m1) vdata
θ (x | t, m2)
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ξ =
m − m2

m1 − m2

m1 m2
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Input

Frequency Embedding

γinti (x, m, t) = ξ * γi(x, m1, t) + (1 − ξ) * γi(x, m2, t)

γintc (m, t) = ξ * γc(m1, t) + (1 − ξ) * γc(m2, t)
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γc(m1, t) γc(m1, t)γint
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γint
i (x, m, t)

vintθ (context)Interpolation using SIGMA
9
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Dataset: LHCO dataset
• Data: 1M QCD di-jet events as background and different amounts of signal 

events.

• The resonant variable is , and the features  are 


• The SR :  .
mJJ x [mJ1

, mJ2
− mJ1

, τJ1
21, τJ2

21, ΔR]
3.3TeV < mJJ < 3.7TeV

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics : arXiv:2101.08320
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Samples
Nsig = 3000

•  is strongly 
correlated with . 

• (context) learns 
this better than 
(linear).

ΔR
m

vint
θ

vint
θ

11
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with CFM

SIGMA}
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Timing Comparison

Method Generative Model Timing

CATHODE/ANODE Normalizing Flows 3 hours per SR

CATHODE/ANODE Flow Matching 30 mins per SR

CURTAINS4F4 Normalizing Flows 3 hours (base model) +  
7 mins per SR

RAD-OT Optimal Transport 10 mins per SR

SIGMA (ours) Flow Matching 30 mins (training) +  
30 secs per SR
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How to select best interpolated model?

•The SIC is very sensitive to 
bad background templates. 

•We suggest doing signal 
injection tests, similar to 
CMS or ATLAS, or adding 
artificial gaussian signals to 
find the best interpolation.

Open question!

14
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Conclusions
• SIGMA re-uses a single generative model trained on all of the data, with a 

subsequent interpolation of its parameters from SB into SR. 

• Reduces the computational cost of SIGMA significantly relative to previous 
approaches such as ANODE/CATHODE, while preserving the high quality of 
their background templates and signal sensitivity.

• Given that there was still a small performance gap between the previous, 
expensive interpolation method (masking out the CR) and SIGMA, on could 
explore further possible improvements:

Using diffusion models instead of flow-matching.

Performing some kind of non-linear interpolation using more than two 
mass points in the control region.
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THANK YOU
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