

in collaboration with: S. Kraml, W. Waltenberger, J. Araz, H. Reyes, A. Butter, C. Krause

Research supported by IN2P3 theory master project DataMATTER and Polish National Science Centre grant 2021/41/N/ST2/00972.

Machine-learning the likelihoods

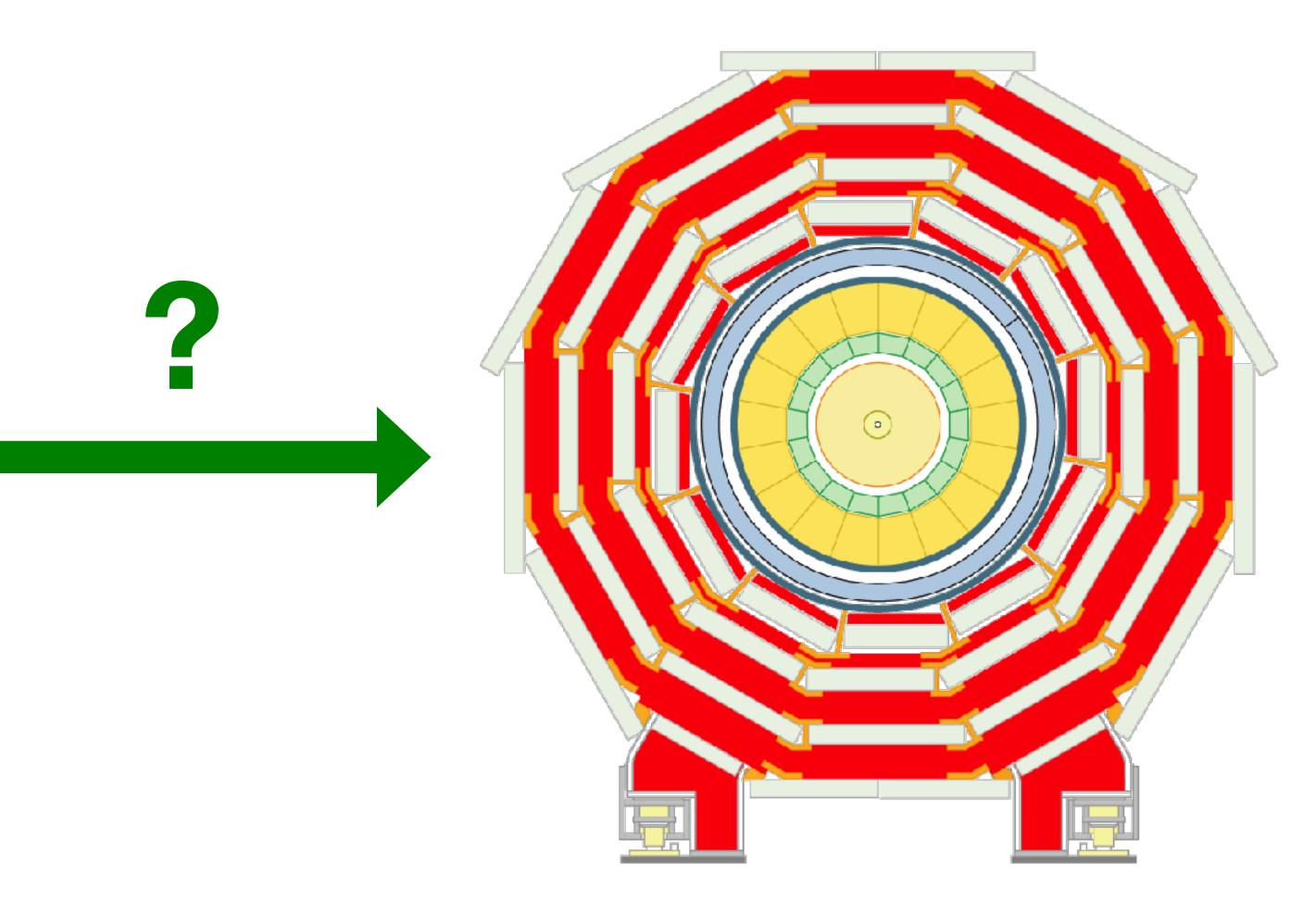
Rafał Masełek

ML4.Jets 2024

Reinterpretation

NEUTRINO MODELS COMPOSITENESS LR-SYMMETRY LEPTOQUARK SUPERSYMMETRY **TWO HIGGS DOUBLETS** AXIONS WIMPs **EXTRA DIMENSIONS** MILICHARGED PARTICLES DARK SECTOR

IMG: https://cds.cern.ch/record/1433717 R. Masełek, ML4Jets 05-11-2024



Reinterpretation

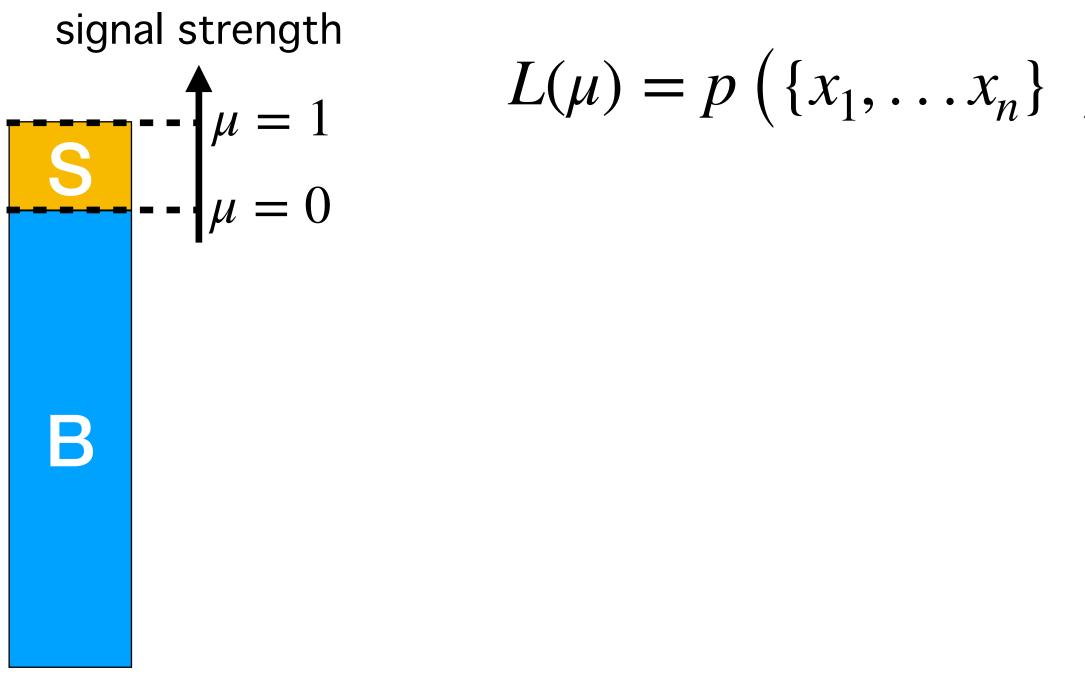
IMG: https://cds.cern.ch/record/1433717

Goal: Enhance and unify the statistical analysis step

Likelihood template — simple

Let's consider a simple experiment. We have a single channel with multiple bins, one signal and background contribution, and no systematics based on the discriminating variable x.

What is the probability model for obtaining n events in data where the discriminating variable for event e has value x_{e} ?



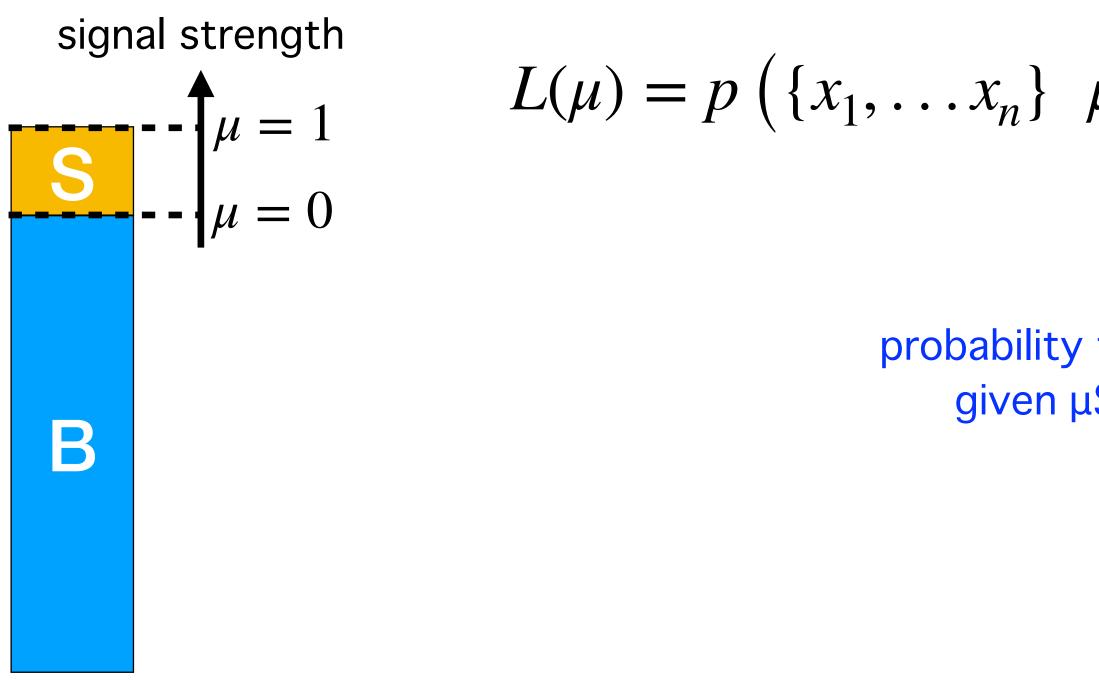
R. Masełek, ML4Jets 05-11-2024 [DOI:10.17181/CERN-OPEN-2012-016]

$$\mu) = 2$$

Likelihood template — simple

Let's consider a simple experiment. We have a single channel with multiple bins, one signal and background contribution, and no systematics based on the discriminating variable x.

What is the probability model for obtaining n events in data where the discriminating variable for event e has value x_e ?

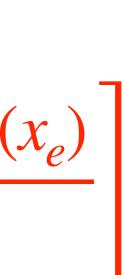


[DOI:10.17181/CERN-OPEN-2012-016]

$$\mu) = \text{Pois} (n \ \mu S + B) \left[\prod_{e=1}^{n} \frac{\mu S \cdot f_{S}(x_{e}) + B \cdot f_{B}}{\mu S + B}\right]$$

to observe n events
S+B expectation probability density of obtaining r

probability density of obtaining x_e based on the relative mixture of $f_{\rm S}(x)$ and $f_{\rm B}(x)$

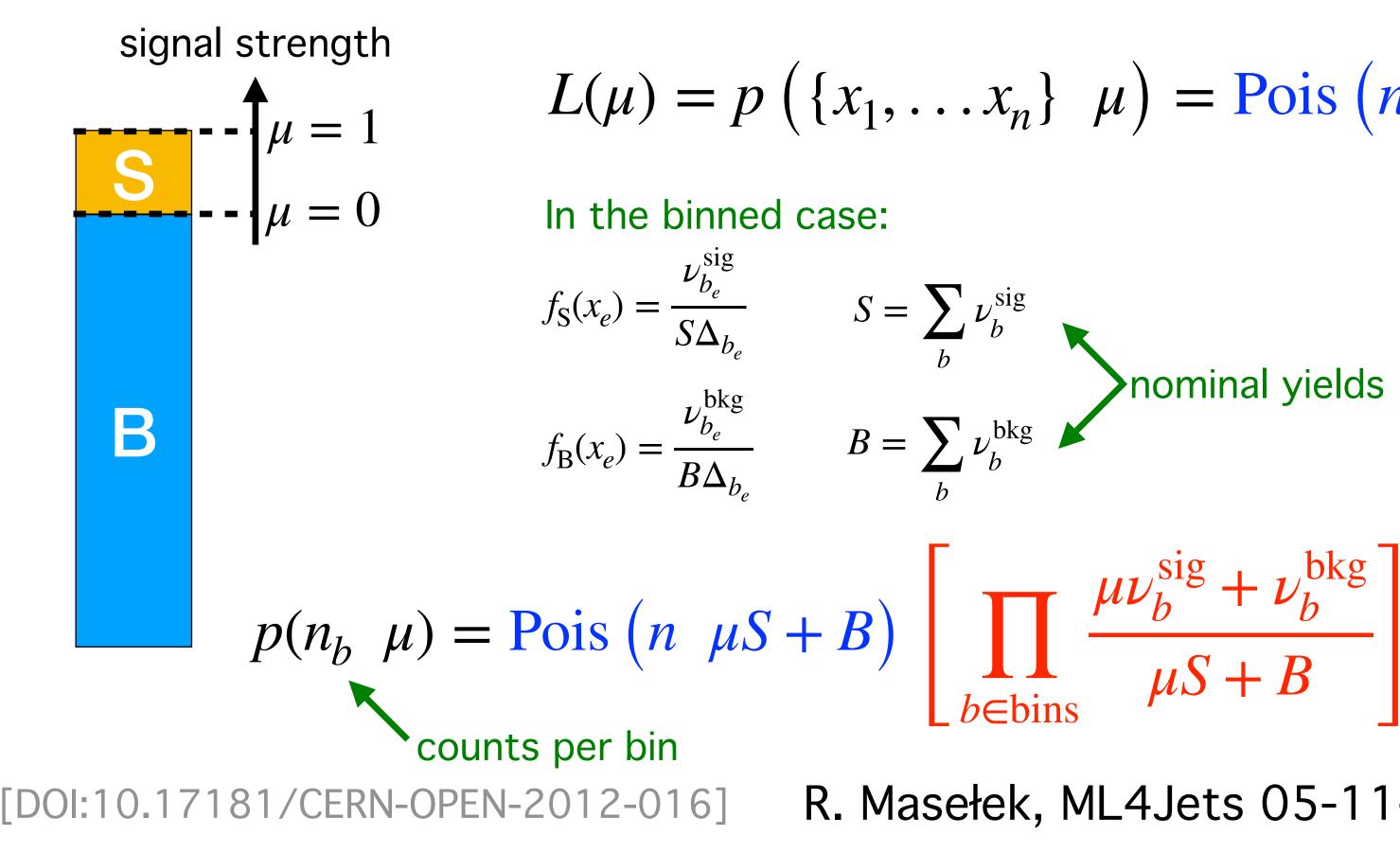




Likelihood template — simple

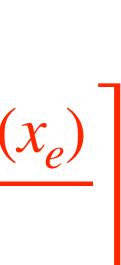
Let's consider a simple experiment. We have a single channel with multiple bins, one signal and background contribution, and no systematics based on the discriminating variable x.

What is the probability model for obtaining n events in data where the discriminating variable for event e has value x_e ?



$$\mu) = \operatorname{Pois}\left(n \ \mu S + B\right) \left[\prod_{e=1}^{n} \frac{\mu S \cdot f_{S}(x_{e}) + B \cdot f_{B}}{\mu S + B}\right]$$

$$\frac{\mu \nu_b^{\text{sig}} + \nu_b^{\text{bkg}}}{\mu S + B} = \mathcal{N}_{\text{comb}} \prod_{b \in \text{bins}} \text{Pois} \left(n_b \ \mu \nu_b^{\text{sig}} + \nu_b^{\text{b}} \right)$$



Likelihood template — HistFactory statistical models

We want to generalise our model to:

- combine multiple channels and correlate the parameters across the various channels
- include unconstrained scaling of the normalization of any sample
- parametrize variation in the normalization of any sample due to some systematic effect
- parameterize variations in the shape of any sample due to some systematic effect
- include bin-by-bin statistical uncertainty on the normalization of any sample
- incorporate an arbitrary contribution where each bin's content is parametrized individually
- use the combination infrastructure to incorporate control samples for datadriven background estimation techniques
- reparametrize the model

[arXiv:2211.15838]

$L(n, a \ \mu, \theta) = \prod_{c}^{\text{channels bins}_{c}} \Pr(n_{cb} \ \nu_{cb}(\mu, \theta)) \prod_{\theta} c_{\theta}(a_{\theta} \ \theta)$

Likelihood template — HistFactory statistical models

We want to generalise our model to:

- combine multiple channels and correlate the parameters across the various channels
- include unconstrained scaling of the normalization of any sample
- parametrize variation in the normalization of any sample due to some systematic effect
- parameterize variations in the shape of any sample due to some systematic effect
- include bin-by-bin statistical uncertainty on the normalization of any sample
- incorporate an arbitrary contribution where each bin's content is parametrized individually
- use the combination infrastructure to incorporate control samples for datadriven background estimation techniques
- reparametrize the model

auxiliary data channel data $L(n, a \ \mu, \theta) = \bigcup_{n \in \mathbb{Z}} \frac{\text{channels bins}_{c}}{\prod_{n \in \mathbb{Z}} P(a)}$ free parameters

constrained parameters

simulta of multiple channels R. Masełek, ML4Jets 05-11-2024

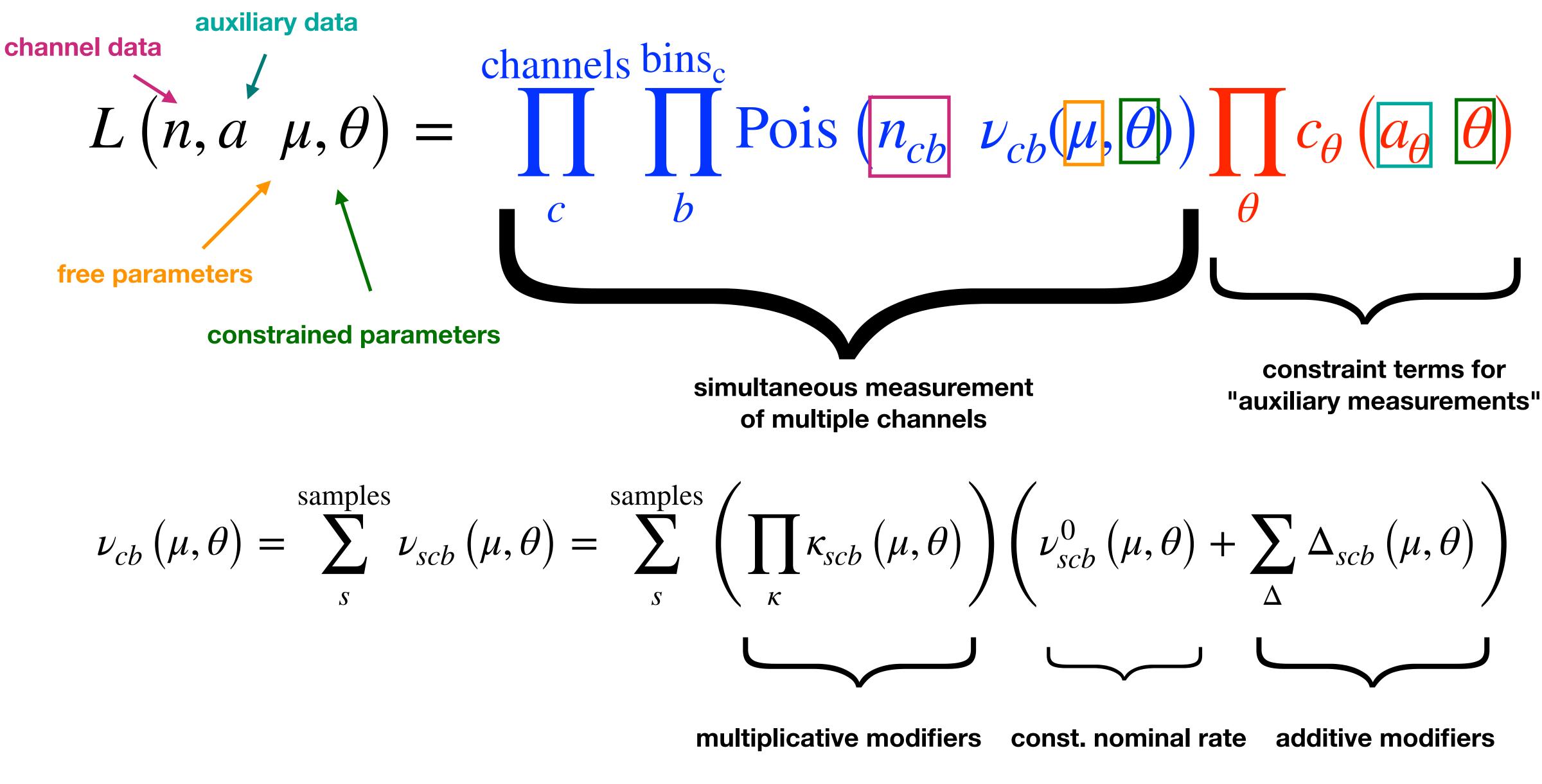
[arXiv:2211.15838]

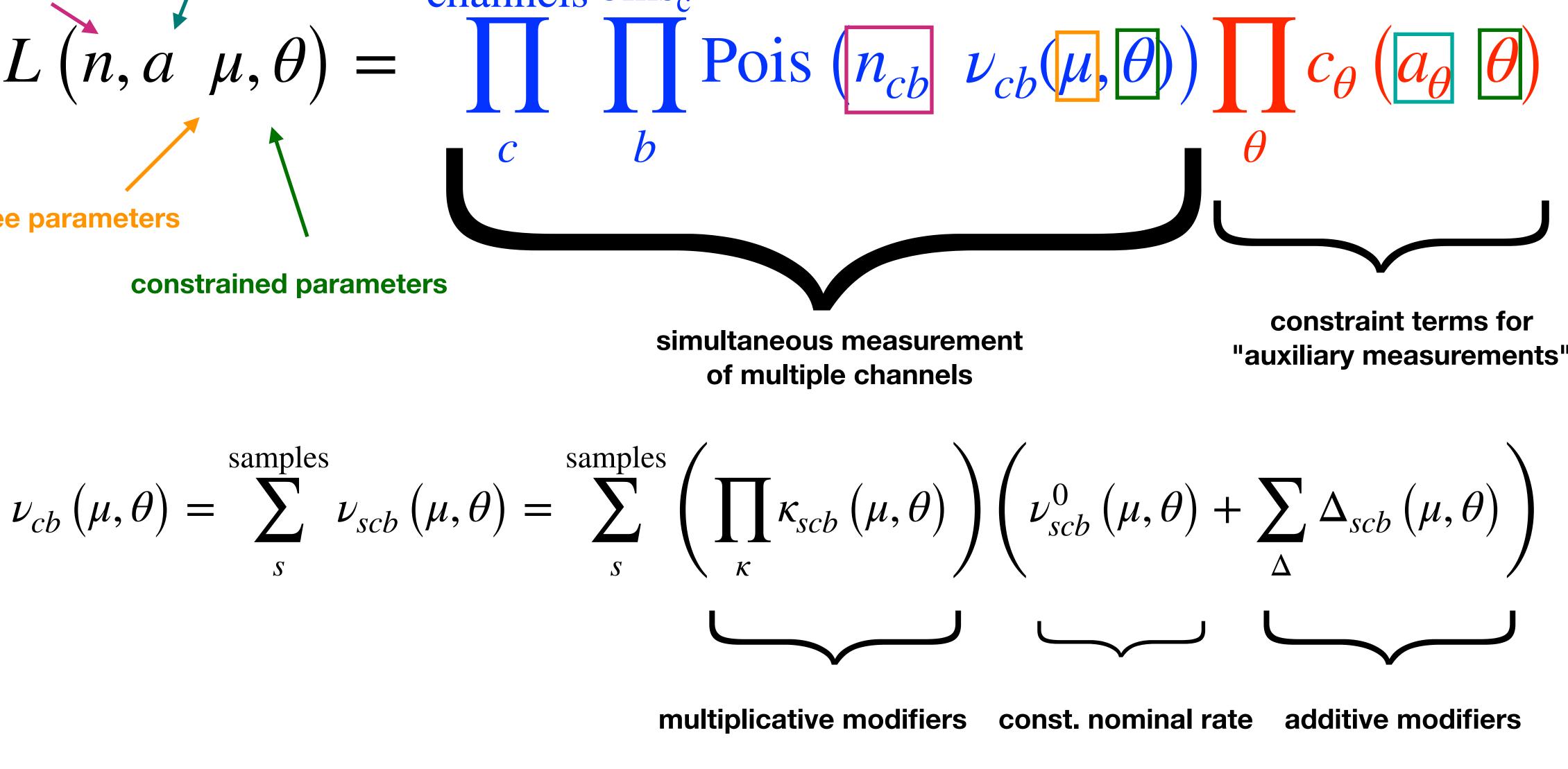
ois
$$(n_{cb} \ \nu_{cb}(\mu, \theta)) \int c_{\theta}(a_{\theta} \ \theta)$$

 θ
aneous measurement constraint terms for

"auxiliary measurements"

Likelihood template — HistFactory statistical models





[arXiv:2211.15838]

Likelihood template — implementation

Full statistical models by ATLAS are available on HEPData

They are provided as JSON files

There are background files and signal patches

Search patch corresponds to some signal point and contains modifiers to the background files

There can be hundreds of modifiers

Spey/PyHF can load and process these files

[arXiv:2211.15838]

```
'patch": [
       "op": "add",
       "path": "/channels/0/samples/0",
       "value": {
           "data":
               2.3051342964172363
           "modifiers": [
                    "data": null,
                    "name": "lumi",
                    "type": "lumi"
               },
5
                    "data": [
                        0.6571804118166927
                    "name": "staterror_QCR1cut_cuts",
                    "type": "staterror"
               },
J
                    "data": {
                        "hi": 1.06675,
                        "lo": 0.911403
                    "name": "PRW_DATASF",
                    "type": "normsys"
```


Likelihood ratio test statistic

In the absence of the niussance parameters, the optimal test statistic (according to Neyman-Pearson lemma) is q:

$$q = -2 \ln \frac{L(\mu = 1)}{L(\mu = 0)}$$

In the more general case, for upper limits we use:

$$\tilde{q}_{\mu} = \begin{cases} 0, \quad \mu < \hat{\mu} \\ -2 \ln \frac{L\left(\mu, \hat{\theta}(\mu)\right)}{L\left(\hat{\mu}, \hat{\theta}\right)}, & 0 \le \hat{\mu} \le \mu, \\ -2 \ln \frac{L\left(\mu, \hat{\theta}(\mu)\right)}{L\left(0, \hat{\theta}(0)\right)}, & \hat{\mu} < 0, \\ \text{R. Masełek, I} \end{cases}$$

 $\hat{\mu}, \hat{\theta}$ — unconditional ML estimators $\hat{\theta}(\mu)$ — ML estimator conditioned on μ . $p_{\mu,\text{obs}} = \int_{\tilde{z}}^{\infty} f\left(\tilde{q}_{\mu} \ \mu'\right) d\tilde{q}_{\mu}$ $J \tilde{q}_{\mu}$,obs $f - PDF of \tilde{q}_u$ ML4Jets 05-11-2024 [arXiv:1007.1727]

Computational bottleneck

BSM model

Full statistical model calculations enter here

Likelihood computation

limit derivation

Fixing the problem

L keli ood

cc mpu

atio

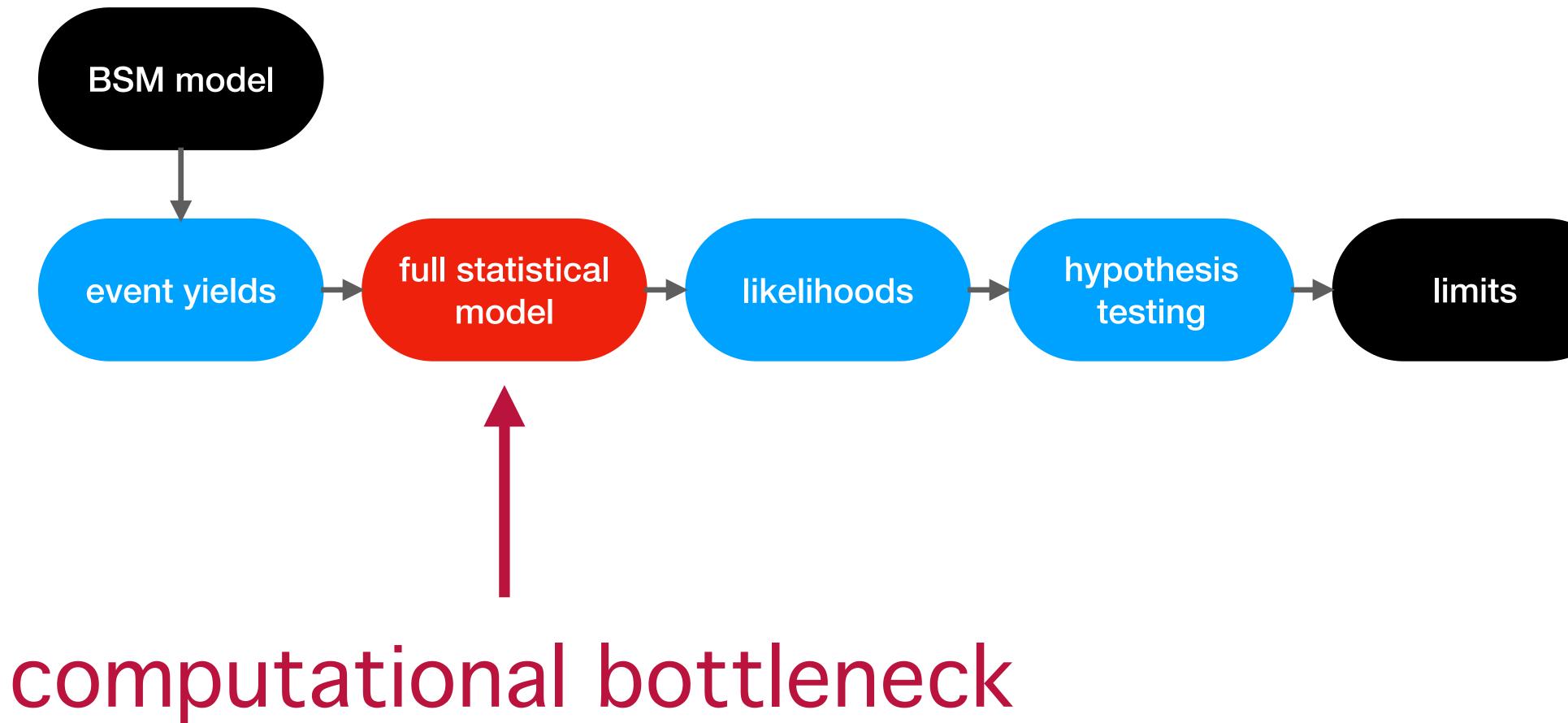
BSM model

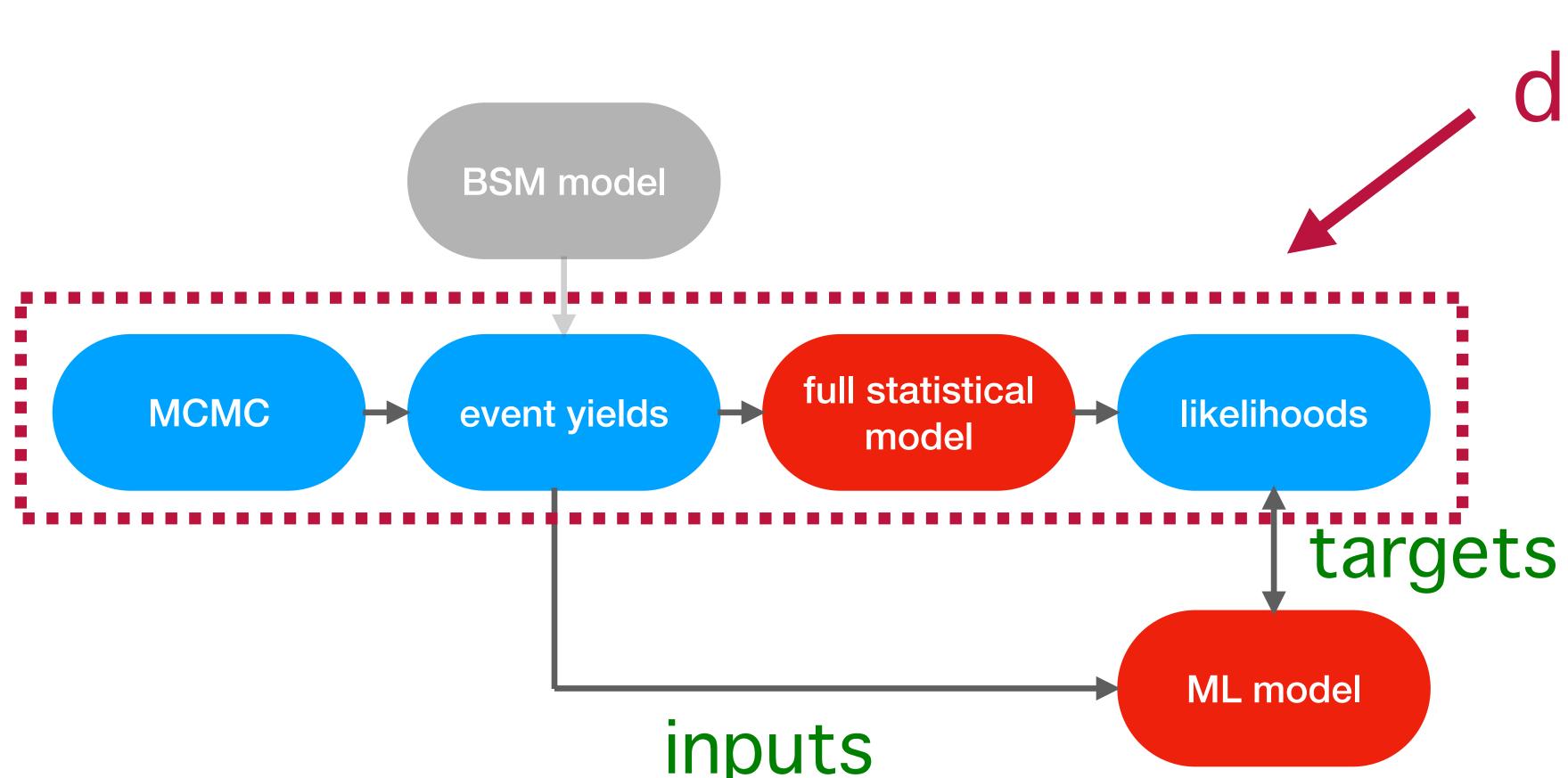
Machine Learning enters here

R. Masełek, ML4Jets 05-11-2024

limit derivation

Old approach





inputs

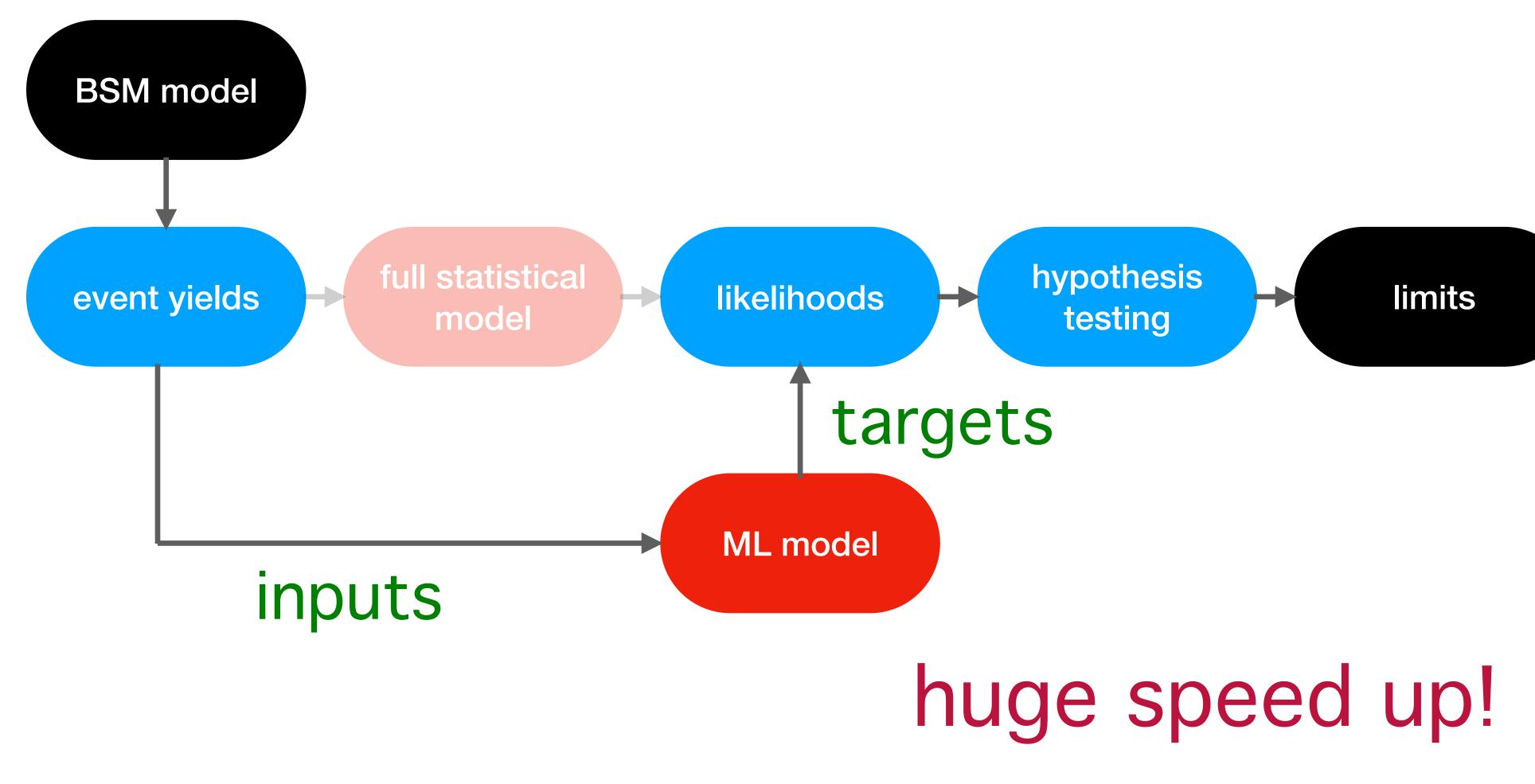
R. Masełek, ML4Jets 05-11-2024

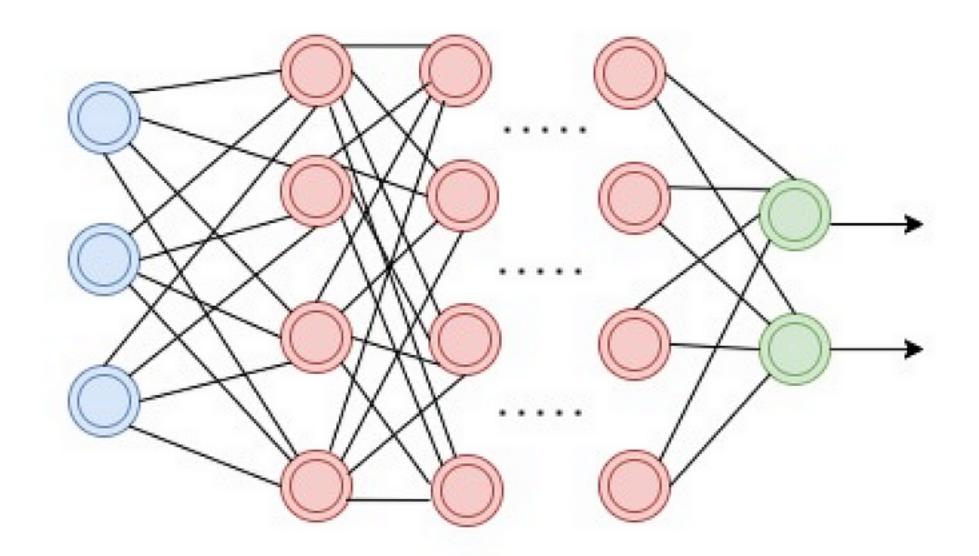
Training

data generation

LPSC Grepsble

Inference

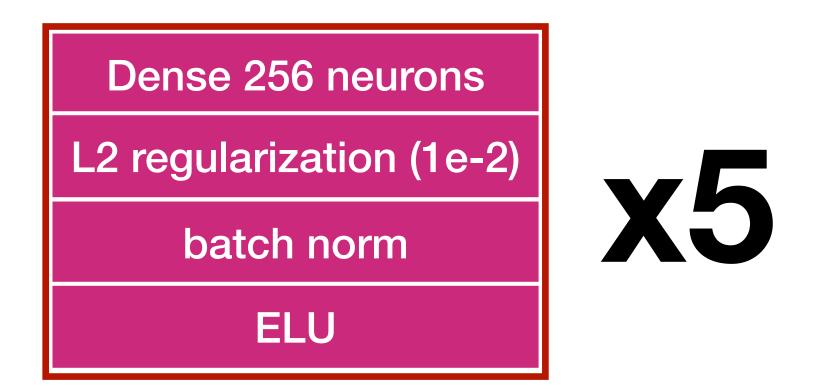




INPUTS: event yields in all bins and channels (including CRs) OUTPUTS: negative log likelihoods (for $\mu=0$ and $\mu=1$), for expected and observed data LOSS FUNCTION: MSE but others tested **OPTIMIZER: ADAM SCHEDULER:** Cosine Decay with warmup

IMG: Google Image

ML model



Preliminary results

ATLAS-SUSY-2018-04 [arXiv: 1911.06660]

Search for direct stau production in events with two hadronic τ -leptons in $\sqrt{s=13}$ TeV pp collisions with the ATLAS detector

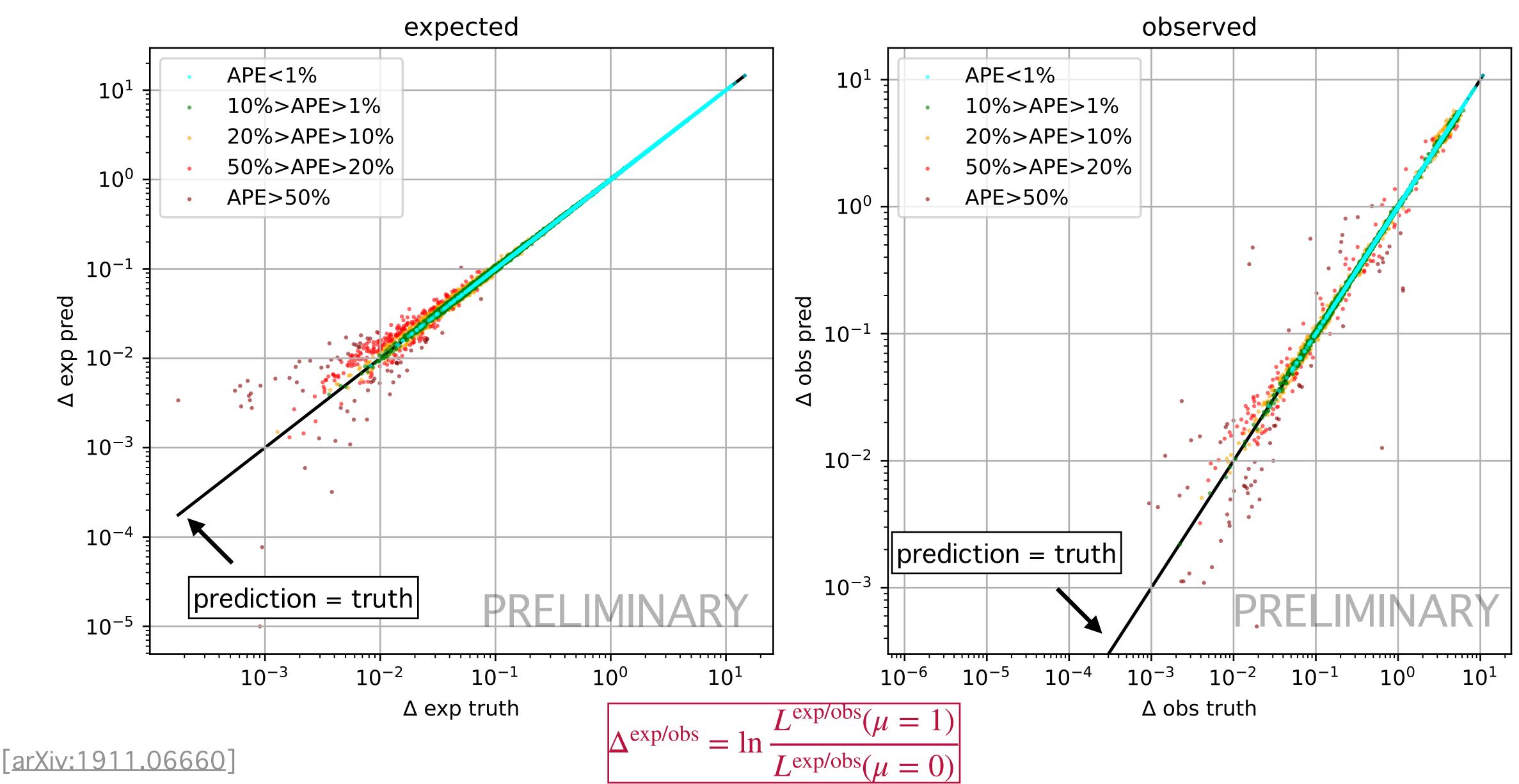
2 signal bins, 3 control bins

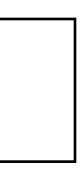
ATLAS-CONF-2019-031 [arXiv: 1909.09226]

Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in ppcollisions at $\sqrt{s}=13$ TeV with the ATLAS detector

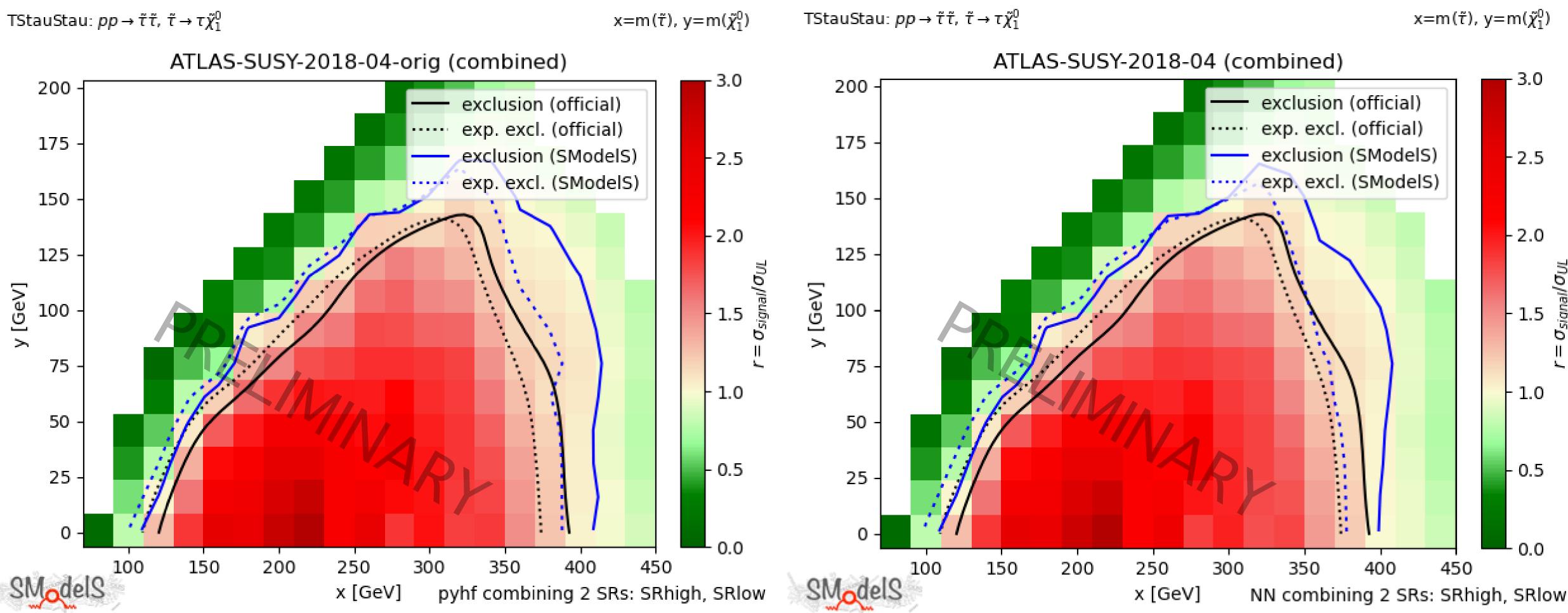
9 signal bins, 5 control bins

Search for direct stau production in events with two hadronic $\tau-leptons$ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector





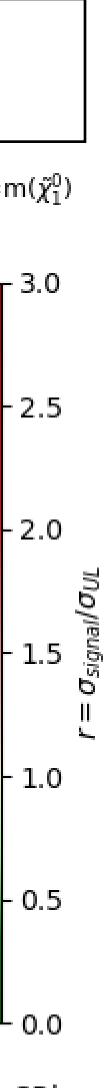
Search for direct stau production in events with two hadronic τ -leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector



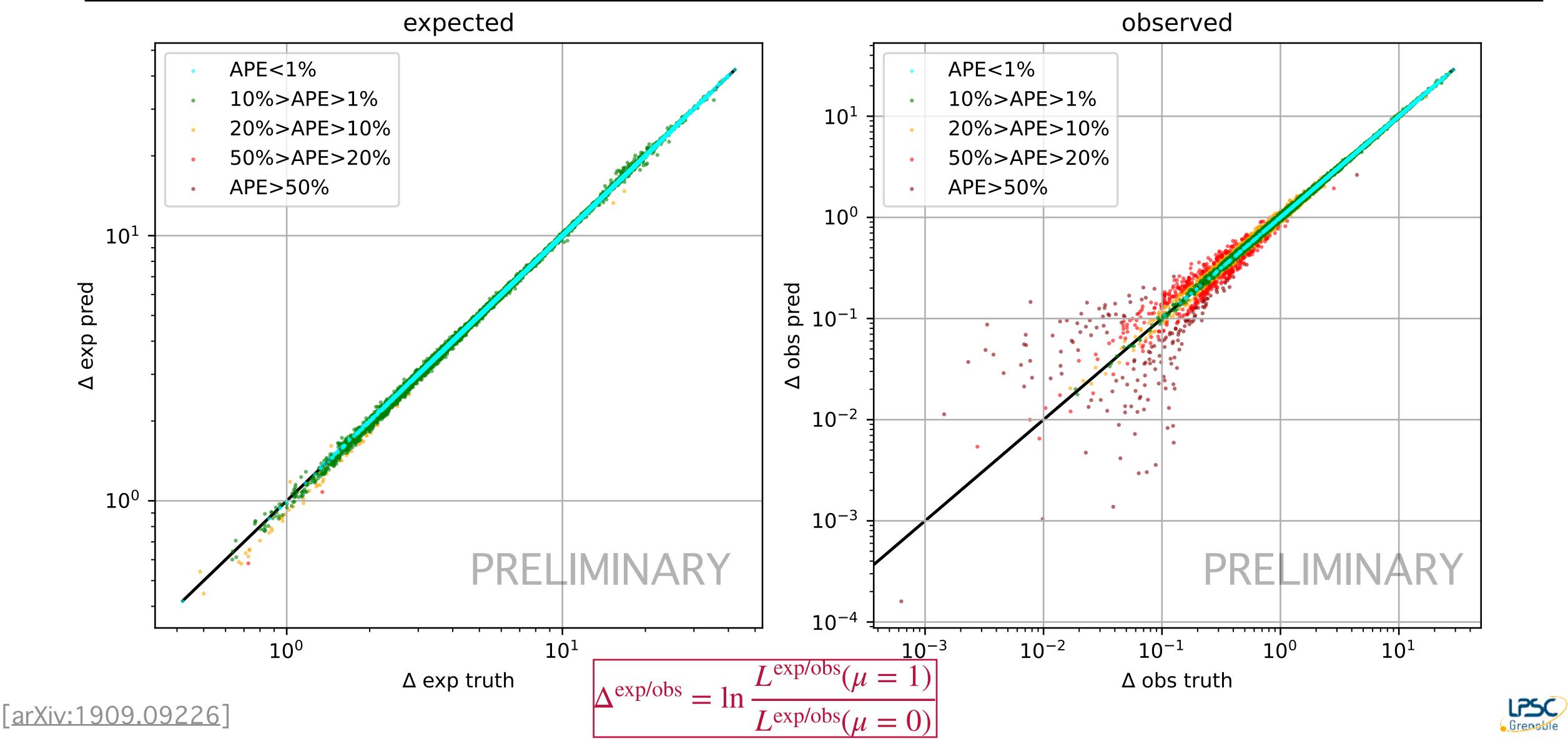
Full Likelihood Model

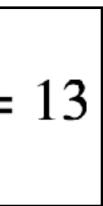
[arXiv:1911.06660]

ML SURROGATE

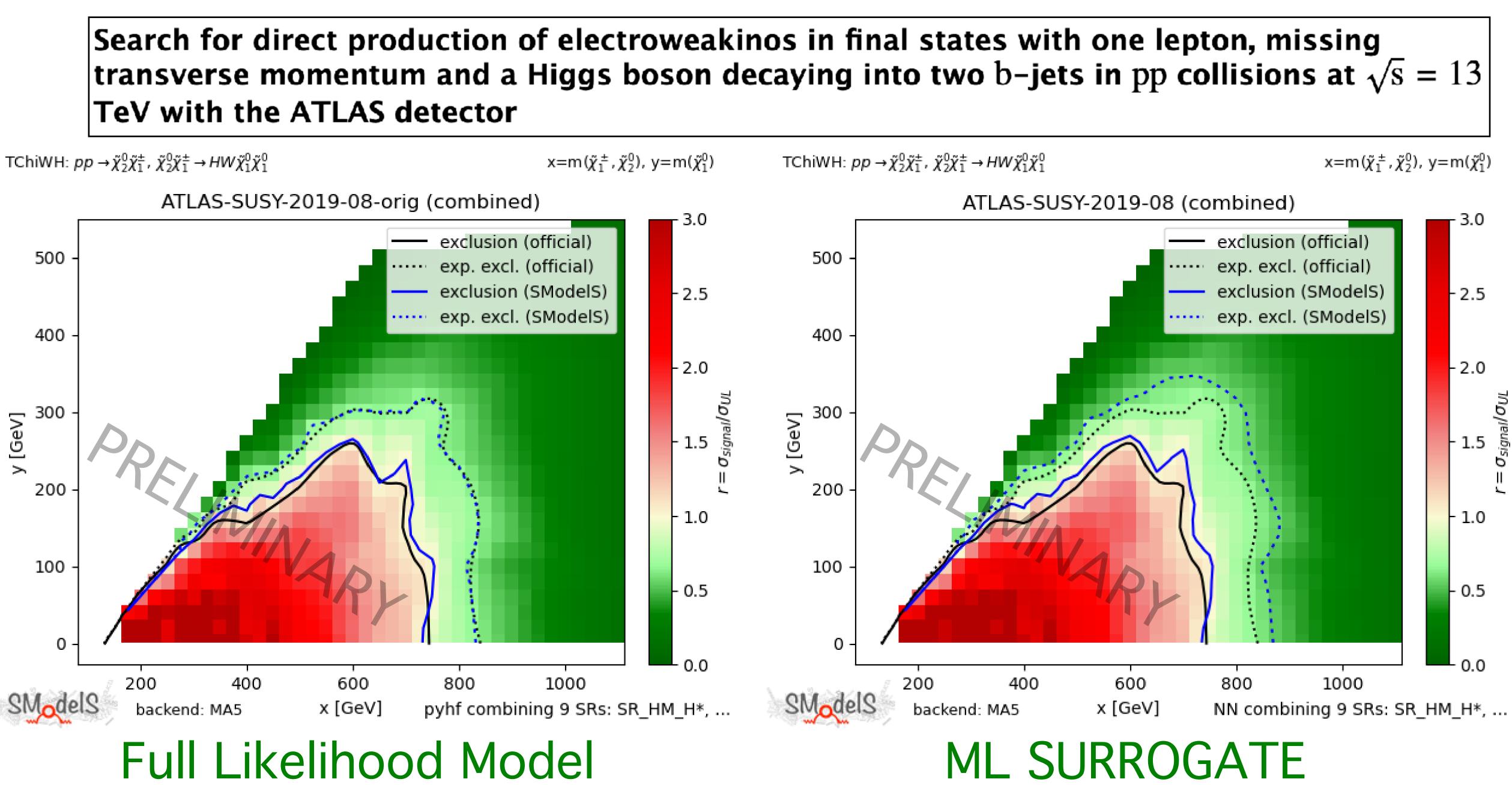


Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector





Search for direct production of electroweakinos in final states with one lepton, missing TeV with the ATLAS detector



[arXiv:1909.09226]

Progress summary and outlook

Task I — data generation

- **MCMC** sampling
- positive and negative signal
- In the second second
- parallelization

Task II — optimizing and training neural networks

[®] automatic hyperparameter optimization

🕸 training

exporting results to ONNX model with metadata

Task III – validation

comparing predictions with truth values

Reproduction of official limits with SmodelS

Task IV – publish models

providing a complete data base with all published models

- & ensuring FAIRness
- Reprint and keeping updated

Thank you for attention! rafal.maselek@lpsc.in2p3.fr

Dolina Chochołowska, Pola photo by Piotr Kałuża

