

Uttiya Sarkar on behalf of the CMS collaboration

Physics Motivation

- Jet flavor identification is very crucial for standard model measurements and searches e.g.
- Higgs sector: $BR(H \rightarrow bb) \sim 60\%$
- Sensitivity for $H \rightarrow c\bar{c}$
- Top quark decay: BR(t → bW) ~ 100%
- New particles decaying to t, H, b or c quarks
- Understanding parton distributions in QCD

udg jet

05.11.2024

Heavy flavor jet tagging

- Heavy flavor jets: Jets originating from b (b jets) or c (c jets) quarks arising from the process of hadronization
- CMS tracker can detect unique features of heavy quarks

P(B)

- track impact parameter
- reconstructed secondary vertex (flight) distance, mass, energy fraction, multiplicity)
- soft lepton

BvsX

Heavier

P(B), P(x) =output nodes in a classifier

lighter

UParT Foundations: ParticleTransformer

$P - MHA(K, Q, V) = \text{Softmax}(QK^T/\sqrt{d_k} + U)V$

- **Input features:** •
 - **Particle features:**
 - Kinematics: 4-vector (E, px, py, pz) •
 - Particle identification: charge, type • (hadron{charged,neutral}, lepton {e,mu}, photon)
 - Trajectory displacement: longitudinal and transverse IP
 - **Interaction features:**

•
$$\Delta = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}$$

- $k_T = min(p_{T,a}, p_{T,b})\Delta$
- $z = min(p_{T,a}, p_{T,b})/(p_{T,a} + p_{T,b})$
- $m^2 = (E_a + E_b)^2 ||\vec{p}_a + \vec{p}_b||^2$

05.11.2024

Ref: 10.48550/arXiv.2202.03772

- Based on the "Attention" model designed for particles
- Input embedding: •
 - Not only inject single particle information, but also include pair-wise features (interactions) Multi-Head Attention (MHA)

- Dataset size: 30M training / 5M validation
- 30 epochs with batch_size of 2048
- in the forward path
- 6 Particle attention blocks + 2 class attention blocks

05.11.2024

UPar T. Modifications:

- Extended class: extending from b and c jet identification to s and hadronic tau (one per final state) identification
- Extended regression: simultaneous flavor aware jet energy regression and resolution

- Extended class: extending from b and c jet identification to s and hadronic tau (one per final state) identification
- Extended regression: simultaneous flavor aware jet energy regression and resolution

Significant improvement in **b-tagging efficiency!**

The local division in which the

- Extended class: extending from b and c jet identification to s and hadronic tau (one per final state) identification
- Extended regression: simultaneous flavor aware jet energy regression and resolution

Improvement in c-tagging efficiency and c vs b discrimination

The local division of

- Extended class: extending from b and c jet identification to s and hadronic tau (one per final state) identification
- Extended regression: simultaneous flavor aware jet energy regression and resolution

First attempt of s-tagging in CMS!

The second

ML4Jets 2024 | Paris, FR

10

- Extended class: extending from b and c jet identification to s and hadronic tau (one per final state) identification
- Extended regression: simultaneous flavor aware jet energy regression and resolution

Improvement in *τ*-tagging performance

Value and

- identification
- energy regression and resolution

Jet Energy Regression

- Extended class: extending from b and c jet identification
- energy regression and resolution

Jet Energy Resolution

- Extended class: extending from b and c jet identification
- energy regression and resolution

Ref: CMS-DP-2024-066

UPar T. Modifications: II

- Adversarial training strategy:
 - Introduce perturbations in loss function against the gradient
 - Scrutinize robustness of the model
 - Reduce the observed differences prior to any calibration

 Adversarial Attack - Rectified Normed Gradient Method (RNGM): • $x_{i,adv} = x_i + \epsilon |\nabla CE(x_i, \theta)|$ mapping

05.11.2024

Preserving the Particle Cloud representation and the feature importance

Robustness of the Attack: pp collision

b-tagging

R-NGM adversarial strategy shows substantial improvement in robustness compared to the nominal training!

05.11.2024

UParT in PbPb collision

- During Run2 (2015-2018): Lead-lead (PbPb) collision relied on MLP room for performance improvement
- UParT ParT model and RNGM attack enables a more robust flavor tagging in PbPb
- samples first time in Run3 data

Significant improvement in performance (light-jet rejection by a factor of 10)

05.11.2024

• UParT retrained specifically with tt and embedded in PbPb Hydrodynamics+JET underlying events

Centrality: degree of overlap of the two colliding nuclei

First tau identification in heavy ion

Robustness of the Attack: PbPb collision

R-NGM adversarial strategy shows substantial improvement in robustness compared to the nominal training!

05.11.2024

Ref: <u>CMS-DP-2024-088</u>

ML4Jets 2024 | Paris, FR

Rapid Development of Machine Learning Architectures over the past decade:

- explored including features like
 - Extended flavor classification
 - Include jet based τ identification
 - Flavor aware jet energy regression and resolutions
 - Achieves best performance in heavy flavor (b,c) tagging
 - First attempt to tag s-jets

Summary

• From simple discriminator to UParT - increasing complexity and capability of models A unified approach to jet tagging based on a Transformer model named UParT is

Outstanding performance in heavy-ion collisions across different PbPb centralities

Thank you for listening!

- Heavy flavor jets = jets originating from b (b jets) or c (c jets) quarks arising from the process of hadronization
- Important in Standard Model (SM), Top, Higgs(H->bb,cc), BSM and SUSY processes

05.11.2024

L neoky

Ideal to observe in CMS, though challenging!

[1] http://cds.cern.ch/record/1279383/files/TRK-10-005-pas.pdf

05.11.2024

CMS Fracking

Subdetector	Radius [cm]	Sensor size $[\mu m]$	Resolution [μ m]	<hits on="" track=""></hits>
Pixel	4.4-10.2	100×150	R <i>\$</i> :10 z:20	3
Strip tracker	25.5-110	~ 100	\sim 15- \sim 45	13

https://pos.sissa.it/190/041/pdf

Historical evolution of particle taggers in CMS

05.11.2024

ML4Jets 2024 | Paris, FR

23

Traile route

- Fully connected neural network (dense)
- Combines properties from selected tracks, secondary vertices and global variables directly (66 features)
- Only a small subset of the charged jet constituents pass stringent quality criteria
 - clean and simple environment for the classifier
 - information loss potential performance degradation

- Convolution, RNN, and Dense layers
- Does not rely on a selection of the jet constituents
 - better purity, more number of inputs
- Full information of all jet constituents, charged and neutral particles, secondary vertices, and global event variables simultaneously rate

ParticleNet

05.11.2024

Parl: lechnicals

- **JETCLASS** dataset
- 10 classes
- training is performed on the full training set of 100M jets
- Lookahead optimizer for cross entropy loss
- train for a total of1M iterations, 5 epochs.
 - LR remains constant for the first 70% of the iterations, and then decays exponentially, at an interval of every 20 k iterations, down to 1% of the initial value at the end of the training.

Performance of the model is evaluated every 20 k ~40 MFLOPS in the forward path opLinger pa features (so we don't compute the

iterations on the validation set and a model checkpoint is saved. checkpoint with the highest accuracy on the validation set is used to evaluate the final performance on the test set.

- 500 k jets per class (in total 5M) is intended for model validation.
- a separate test set with 2M jets in each class (in total 20 M) for performance evaluation

5				
	Model complex	Accuracy	# params	
	F	PFN	0.772	86.1 k
	F	P-CNN	0.809	354 k
	F	ParticleNet	0.844	370 k
on Block	I	ParT	0.861	2.14 M
	F	ParT (plain)	0.849	2.13 M

ML4Jets 2024 | Paris, FR

LN

Linear

LN

LN

MHA

concat

ParT: Performance benchmarks

Comparison with previous taggers

	All	classes	H -	$\rightarrow b\bar{b}$ H –	$\rightarrow c\bar{c}$ H	$\rightarrow gg$ H	$I \to 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \rightarrow b \ell \nu$	$W \to qq'$	$Z \rightarrow$
	Accura	cy AUC	Rej ₅	_{60%} Rej	50% Re	ej _{50%} F	Rej _{50%}	Rej _{99%}	Rej _{50%}	Rej _{99.5%}	$\text{Rej}_{50\%}$	Rej ₅₀
PFN	0.772	0.971	4 292	24 84	41	75	198	265	797	721	189	159
P-CNN	0.809	0.978	9 489	90 12	76	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.984	9 763	34 24	75	104	954	3339	10526	11173	347	283
ParT	0.861	0.987	7 106	38 41	49 1	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.985	9 956	59 29	11	112	1185	3868	17699	12987	384	311
Increasin	ng trai	ning d	atase	et size						AND AUTOR		
		All clas	sses	$H \to b\bar{b}$	$H \to c \bar{c}$	$H \to gg$	$H \to 4$	$q H \to \ell \nu q$	$q' t \to bqq$	$t' t \to b\ell\nu$	$W \to qq'$	$Z \rightarrow$
		Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{50%}	Rej _{50%}	$\operatorname{Rej}_{99\%}$	Rej _{50%}	Rej _{99.5%}	Rej _{50%}	Rej ₅₀
ParticleNet (2	M)	0.828	0.9820	5540	1681	90	662	1654	4049	4673	260	215
ParticleNet (1	0 M)	0.837	0.9837	5848	2070	96	770	2350	5495	6803	307	253
ParticleNet (1	100 M)	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT (2 M)		0.836	0.9834	5587	1982	93	761	1609	6061	4474	307	236
$\mathbf{D} = \mathbf{T} (1 0 \mathbf{N} \mathbf{I})$												250
ParT(10 M)		0.850	0.9860	8734	3040	110	1274	3257	12579	8969	431	324

	All C	lasses	$H \rightarrow$	$bb H \rightarrow$	$\rightarrow cc$ H	$\rightarrow gg H$	$\rightarrow 4q$ I	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \to b \ell \nu$	$W \rightarrow qq'$	$Z \rightarrow$
	Accuracy	AUC	Rej ₅₀	$_{\%}$ Rej ₅	0% Re	j _{50%} R	lej _{50%}	Rej _{99%}	Rej _{50%}	Rej _{99.5%}	Rej _{50%}	Rej ₅₀
PFN	0.772	0.9714	2924	84	1 '	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890) 127	6	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	247	5 1	04	954	3339	10526	11173	347	283
ParT	0.861	0.9877	1063	8 414	9 1	23	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	291	1 1	12	1185	3868	17699	12987	384	311
Increasin	g trair	ning da	atase	t size						AND ALLAND	il n	
		All class		$H \rightarrow hh$	$H \rightarrow cc$						TT7 . /	7
				n 700	$\Pi \rightarrow cc$	$H \rightarrow gg$	$H \to 4q$	$H \to \ell \nu q q$	$t' t \to bqq$	$\begin{array}{cc} t \to b\ell\nu \\ & \Sigma \end{array}$	$W \to qq'$	$Z \rightarrow$
	Α	ccuracy	AUC	Rej _{50%}	$\operatorname{Rej}_{50\%}$	$H \rightarrow gg$ Rej _{50%}	$H \rightarrow 4q$ Rej _{50%}	$H \to \ell \nu q q$ $Rej_{99\%}$	$t' t \to bqq$ Rej _{50%}	$t \to b\ell\nu$ Rej _{99.5%}	$W \rightarrow qq'$ Rej _{50%}	$Z \rightarrow \text{Rej}_{50}$
ParticleNet (2)	A M)	ccuracy 0.828	AUC 0.9820	Rej _{50%}	$\frac{\Pi \rightarrow cc}{\text{Rej}_{50\%}}$ 1681	$H \rightarrow gg$ $Rej_{50\%}$ 90	$H \rightarrow 4q$ $Rej_{50\%}$ 662	$H \to \ell \nu q q$ $Rej_{99\%}$ 1654	$t' t \rightarrow bqq$ Rej _{50%} 4049	$t \rightarrow b\ell\nu$ Rej _{99.5%} 4673	$W \rightarrow qq'$ $Rej_{50\%}$ 260	$Z \rightarrow $ Rej ₅₀ 213
ParticleNet (2) ParticleNet (10	A M) () M)	ccuracy 0.828 0.837	AUC 0.9820 0.9837	Rej _{50%} 5540 5848	Rej _{50%} 1681 2070	$H \rightarrow gg$ $Rej_{50\%}$ 90 96	$H \rightarrow 4q$ $Rej_{50\%}$ 662 770	$H \rightarrow \ell \nu q q$ $Rej_{99\%}$ 1654 2350	$t \rightarrow bqq$ Rej _{50%} 4049 5495	$t \rightarrow b\ell\nu$ $Rej_{99.5\%}$ 4673 6803	$W \rightarrow qq'$ $Rej_{50\%}$ 260 307	$Z \rightarrow $ Rej ₅₀ 213 253
ParticleNet (2 ParticleNet (10 ParticleNet (1	A M)) M) 00 M)	ccuracy 0.828 0.837 0.844	AUC 0.9820 0.9837 0.9849	Rej _{50%} 5540 5848 7634	Rej _{50%} 1681 2070 2475	$H \rightarrow gg$ $Rej_{50\%}$ 90 96 104	$H \rightarrow 4q$ Rej _{50%} 662 770 954	$H \rightarrow \ell \nu q q$ $Rej_{99\%}$ 1654 2350 3339	$t \rightarrow bqq$ Rej _{50%} 4049 5495 10526	$t \rightarrow b\ell\nu$ Rej _{99.5%} 4673 6803 11173	$W \rightarrow qq'$ Rej _{50%} 260 307 347	$Z \rightarrow \text{Rej}_{50}$ 213 253 283
ParticleNet (2 ParticleNet (10 ParticleNet (1 ParticleNet (1 ParT (2 M)	A M)) M) 00 M)	ccuracy 0.828 0.837 0.844 0.836	AUC 0.9820 0.9837 0.9849 0.9834	Rej _{50%} 5540 5848 7634 5587	Rej _{50%} 1681 2070 2475 1982	$H \rightarrow gg$ $Rej_{50\%}$ 90 96 104 93	$H \rightarrow 4q$ Rej _{50%} 662 770 954 761	$H \rightarrow \ell \nu q q$ $Rej_{99\%}$ 1654 2350 3339 1609	$t \rightarrow bqq$ Rej _{50%} 4049 5495 10526 6061	$t \rightarrow b\ell\nu$ Rej _{99.5%} 4673 6803 11173 4474	$W \rightarrow qq'$ Rej _{50%} 260 307 347 307	$Z \rightarrow \text{Rej}_{50}$ 213 253 283 236
ParticleNet (2 ParticleNet (10 ParticleNet (1 ParT (2 M) ParT (10 M)	A M)) M) 00 M)	ccuracy 0.828 0.837 0.844 0.836 0.850	AUC 0.9820 0.9837 0.9849 0.9834 0.9860	Rej _{50%} 5540 5848 7634 5587 8734	Rej _{50%} 1681 2070 2475 1982 3040	$H \rightarrow gg$ $Rej_{50\%}$ 90 96 104 93 110	$H \rightarrow 4q$ $Rej_{50\%}$ 662 770 954 761 1274	$H \to \ell \nu q q$ $Rej_{99\%}$ 1654 2350 3339 1609 3257	$t \rightarrow bqq$ Rej _{50%} 4049 5495 10526 6061 12579	$t \rightarrow b\ell\nu$ Rej _{99.5%} 4673 6803 11173 4474 8969	$W \rightarrow qq'$ Rej _{50%} 260 307 347 307 431	$Z \rightarrow \\ \text{Rej}_{50} \\ 213 \\ 253 \\ 283 \\ 236 \\ 324 \\ 32$

05.11.2024

U Par L: lechnicals

- Dataset size: 30M training / 5M validation
- 30 epochs with batch_size of 2048
- •Complexity is the one of a 6 layers ParT, ~40M FLOPS in the forward path
- •6 PMHA + 2 CLS blocks

input

layer

The Fast Gradient Sign Method (FGSM) on input features

UParT: In a nutshell

hidden layer

Addition of flavor classes

Addition of flavor aware Jet energy regression and resolution

P-MHA block from ParT

05.11.2024

UParT and ParticleNet show similar jet resolution response

Capable of estimating a per-jet resolution from the quantile regression

05.11.2024

Jet Energy Resolution

ML4Jets 2024 | Paris, FR

