

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s} = 13$ TeV

ML4Jets 2024, Paris

Aritra Bal (Karlsruhe Institute of Technology)

For the CMS Collaboration

Aritra Bal (aritra.bal@kit.edu)

Institute for Experimental Particle Physics (ETP), KIT

ML4Jets 2024 - Paris

Overview

- ★ Target dijet topologies with both jets clustered using anti-k_T (R=0.8)
- Search for a narrow resonance of the form $A \rightarrow BC$
- Exploit jet substructure anomalous jets may have (multiple) prongs
- Total of 5 complementary machine learning techniques - each with its own strengths

Designing an Anomaly Tagger

- Supervised learning Train on MC with labelled examples
- Unsupervised approach Train directly on data to avoid specific signal model bias
- All but one of the five methods use only data for training

Weak Supervision: *CWoLa* Hunting
Tag N' Train (*TNT*)
Classifying Anomalies THrough Outer Density Estimation (*CATHODE*)
Unsupervised (Autoencoder based) *VAE-QR*Semi-supervised *QUasi Anomalous Knowledge (QUAK)*Trained on sideband, learns QCD distribution

Unsupervised Learning with Autoencoders (VAE-QR)

- Autoencoder-based anomaly search train a network to "reconstruct" jets from a QCD-dominated control region and apply to data from signal region
- Anomaly metric = network loss
- Decorrelate loss from m_{JJ} using a DNN based Quantile Regression (QR) reduces background "sculpting"

Weak Supervision Paradigm

mres

- ★ Train classifier to distinguish data from a background-like sample → different proportions of signal
 - In practice: two sidebands defined on either side of a narrow signal region
- $\ \ \, \hbox{ No signal} \rightarrow \hbox{ Classifier learns random noise }$
- Three methods in total:
 - CWoLa: background events selected from sideband defined on either side of narrow signal region
 - TNT: Additional autoencoder preselection, designed for events with 2 anomalous jets
 - CATHODE: Uses normalizing flows to interpolate background from sideband into signal region

Semi-supervised learning: QUAK

Idea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

- Every event mapped into a unique point in a 2D QUAK space
 - Use different normalizing flows trained on QCD background MC and (mixture of) signal MC
- The signal lies somewhere in that space and the background lies somewhere else
- Select events by creating a unique 2D contour for each signal mass hypothesis designed to exclude background events

What can we do with this?

(13 TeV)

CMS Simulation Preliminary

Inclusive: $X \rightarrow YY$, $\sigma=24$ fb

Signal Background

4000

Simulated Pseudodata
Signal + Background Fit

 $\gamma^2/ndf = 27.11/31 = 0.87$

Prob = 0.667

5000

Dijet invariant mass (GeV)

6000

- Perform a bump hunt on the m_{JJ} spectrum and look for interesting deviations
 - QCD background is smoothly falling
 - Signal is a narrow resonance can be modelled using a Double Crystal Ball function

We use (almost) no MC for training

- > But can use it to set limits on various signal models
- Never been done before for most models we look at
- For weakly supervised methods do this by injecting various cross sections of signal into data and training a classifier each time

10

10

10⁵

10⁴

 10^{3}

 10^{2}

10

What if?

2000

3000

Events / 100 GeV

What did we see?

- All methods report no significant deviation from the Standard Model in CMS Run II data (recorded during the period 2016-18) at a total integrated luminosity of 137 fb⁻¹
- Remember that these searches are model agnostic goal is to show broad sensitivity by setting limits on a range of signals

Bump hunting

- Use generic signal shape to scan for potential anomalies across entire dijet mass spectrum
- No significant deviation observed by any method

Expected Significances

Karlsruhe Institute of Technology

- Inject signal into a toy background MC dataset and calculate expected significances
- Improved performance with higher daughter particle masses in general
- Test with a 3 pronged signal:
 - \succ W \rightarrow B' t \rightarrow qqq qqq

Discovery Potential at 3 TeV

- Compare methods by benchmarking on several signal models
- Find what injected cross section of signal would lead to a 3σ/5σ significance
- Better than inclusive, or simple cuts

Aritra Bal (aritra.bal@kit.edu)

ML4Jets 2024 - Paris

Limits - 3 TeV

ML4Jets 2024 - Paris

Comparing Methods

- In general no strong correlations between methods
- ◆ TNT and CWoLa are the most correlated → expected since the difference lies in the autoencoder preselection

CMS Simulation Preliminary				(13 TeV)	CMS Simulation Preliminary (13 T					(13 TeV)	
VAE	-	0.15	0.17	0.39	0.44	VAE	-	0.33	0.24	0.11	0.22
CWoLa Hunting	0.15		0.65	0.18	0.14	CWoLa Hunting	0.33		0.70	0.47	0.36
TNT	0.17	0.65		0.25	0.30	TNT	0.24	0.70		0.31	0.26
CATHODE	0.39	0.18	0.25		0.62	CATHODE	- 0.11	0.47	0.31		0.51
QUAK	0.44	0.14	0.30	0.62	-	QUAK	0.22	0.36	0.26	0.51	
-	VAE CNOLS	Hunting	N ^{II}	THODE	QUAT		VAE	4 Hunting	THI C	THODE	QUAT

Summary and Conclusions

- First results on data from the CMS Detector, using Unsupervised Anomaly Detection techniques
- Methods are sensitive to a broad range of signals could flag any interesting deviations to direct dedicated searches
- Lots of scope for future work in anomaly detection with CMS this was just the beginning
- Results already available on <u>CDS</u> [CMS-EXO-22-026] and will soon appear in a journal stay tuned!

CMS-EXO-22-026

BACKUP

- > VAE: pT, η , ϕ of leading 100 particle flow constituents (per jet)
- > CWoLa, TNT: mSD, T21, T32, T43, nPF, LSF3, b-tagging score (per jet)
- CATHODE: mSD1, mSD1 mSD2, t41,1, t41,2 (per event)
- > QUAK: mSD, τ 21, τ 32, τ 43, $\sqrt{\tau}$ 21/ τ 1, M/pT (for each jet, per event)

Control Region Definition

- Signal region $|\Delta \eta| < 1.3$
- Control region 2.0 < |Δη| < 2.5 + additional cuts
 - Extra cuts further suppress signal contam
 - Ensure signal reduction is at least 10x

$$AND \begin{cases} 2.0 < \Delta \eta < 2.5\\ \text{No jet extra with } p_{\text{T}} > 300 \,\text{GeV}\\ \\OR \begin{cases} \left|\frac{p_{\text{T},1} - p_{\text{T},2}}{p_{\text{T},1} + p_{\text{T},2}}\right| > 0.1\\ \\A = p_{\text{T},1} p_{\text{T},2} (2 \cosh \Delta \eta + 2) / m_{jj}^2 \notin [0.95, 1] \end{cases}$$

Weak Supervision

Bin Name	Range (GeV)	Eff. Cut	Signal Masses (GeV)	Num. data events
A0	1350-1650	1 <u>-</u>		13.8M
A1	1650-2017	1%	1800, 1900	4.5M
A2	2017-2465	1%	2200, 2300	1.4M
A3	2465-3013	1%	2600, 2700, 2800	400k
A4	3013-3682	3%	3200, 3300, 3400, 3500	100k
A5	3682-4500	3%	3900, 4100, 4200, 4300	22k
A6	4500-5500	5%	4800, 4900, 5000, 5100, 5200	3.9k
A7	5500-8000	-	-	479
B0	1492-1824		3 .	6.6M
B1	1824-2230	1%	2000, 2100	2.1M
B2	2230-2725	1%	2400, 2500	630k
B3	2725-3331	1%	2900, 3000, 3100	170k
B4	3331-4071	3%	3600, 3700, 3800	42k
B5	4071-4975	3%	4400, 4500, 4600, 4700	8.5k
B6	4975-6081	5%	5300, 5400, 5500, 5600, 5700, 5800	1.3k
B7	6081-8000			144

 $m_{\rm sd'}$ τ_{21} , τ_{32} , τ_{43} , $n_{\rm PF}$, LSF₃, DeepB

CWoLa

- Reweight events in SR and SB:
 - Upper and low mass sidebands reweighted to have same weight
 - Signal region also re-weighted to have weight equal to both SBs
 - Finally, reweight SR jets to have same p_{τ} distribution as SB jet
- Two different network architectures used in different signal regions to prevent overfitting
 - Smaller network with O(3.6k) parameters used when SR events < 10k
 - Larger network with O(30k) parameters used otherwise
- Combining CWoLa scores (since there are 2 per-jet classifiers):
 - Convert each score to %ile using their distributions
 - Event anomaly score = $max(S_1, S_2)$
 - Finally define threshold as anomaly score that selects events with given efficiency (see table) in weighted average of sidebands, and use across whole mass spectrum for that SR

CWoLa + TNT inputs:

 $m_{\rm sd}$, τ_{21} , τ_{32} , τ_{43} , $n_{\rm PF}$, LSF₃, DeepB

CATHODE

- Conditional normalizing flow uses m_{...} as conditional input
- Train separate density estimator for m_{...} using a Gaussian Kernel Density Estimator
- $f^{-1}(z,m)$ with $z \sim N^{n}(0,1)$ and $m \sim KDE(m_{JJ})$ is used to generate synthetic samples

Autoencoders: Basics

- Goal: Pass through information bottleneck to reconstruct input
- Hidden (Latent) space: learns most important features
- Train on QCD sideband so network learns background but not signal use reconstruction loss as anomaly metric
- Signal high reconstruction loss
- Background low reconstruction loss
- Variational Autoencoder: Gaussian latent space

Karlsruhe Institute of Technology

- VAE
 - Latent space size of 12
 - Training uses Chamfer loss + Kullback-Leibler divergence of between latent space & Gaussian
 - Cross validation with 4 folds used for Quantile Regression
 - Average QR fit of other 3 folds used when selecting events on $4^{\mbox{\tiny th}}$
 - QR fits use dense NN with 5 layers and 30 nodes per layer
 - Three categories used in limit setting
 - Cat1: Most anomalous 1% (>99%)
 - Cat2: Next most anomalous 4% (95-99%)
 - Cat3: Next most anomalous 5% (90-95%)
 - In model-indep search, use single category, >90%

3-category fit: Use above defined three categories, fully correlate the backgrounds and fit with a single function

QUAK

- Uses Masked Autoregressive Rational Quadratic Spline (RQS) flows
- Chain of analysis:
 - 1. Calculate the spline parameters:

$$\theta_{w,i}^{j}, \theta_{h,i}^{j}, \theta_{d,i}^{j} = \text{NN}(z_{i}^{1:j-1})$$

where θ_w , θ_h , and θ_d specify the bin widths along the input (*w*), output (*h*) dimensions, and the internal derivatives (*d*).

2. Use the parameters to evaluate the spline and update the input:

$$\boldsymbol{z}_{i}^{j} = \mathrm{RQS}_{\boldsymbol{\theta}_{w,i}^{j}, \boldsymbol{\theta}_{h,i}^{j}, \boldsymbol{\theta}_{d,i}^{j}}(\boldsymbol{z}_{i-1}^{j})$$

3. Repeat for all j = 1, .., D (D = dimensionality of input **z**).

QUAK selection

- Evaluate NLL Loss of each different model (1 bkg + 6 signal) on inputs
- Perform loss reduction on signal losses to get 2D loss vector
- 1. $(M_B, M_C) = (80, 80)$: the only signal sample used here was XYY2000_Y80_Yp80.
- 2. $(M_B, M_C) = (80, 170)$: combination of Wkk2000_R170, Wkk3000_R170, Wp2000_B80_T170, Wp3000_B80_T170, and XYY2000_Y80_Yp170 events.
- 3. (*M*_B, *M*_C) = (80, 400): combination of Wkk2000_R400, Wkk3000_R400, XYY2000_Y400_Yp80, XYY2000_Y80_Yp400, and XYY3000_Y80_Yp400 events.
- 4. $(M_B, M_C) = (170, 170)$: combination of Wp2000_B170_T170, Wp3000_B170_T170, and XYY3000_Y170_Yp170 events.
- 5. (*M*_B, *M*_C) = (170, 400): combination of Wp2000_B400_T170, Wp3000_B400_T170, XYY2000_Y170_Yp400, XYY2000_Y400_Yp170, and XYY3000_Y400_Yp170 events.
- 6. $(M_B, M_C) = (400, 400)$: combination of YHH2000_H400, YHH3000_H400, ZTT2000_Tp400, and ZTT3000_Tp400 events.

QUAK Selection

- Construct 2D QUAK Space with bkg and sig losses as described
- Select top X% of events with highest bkg. Loss and bin surviving in 2D QUAK space
- For given m_H define
 - SR: [m_H 400, m_H + 200] GeV
 - SBs: $[\dot{m_{H}} 900, \dot{m_{H}} 400]$ GeV and $[m_{H} + 200, m_{H} + 700]$ GeV
- Background template: Bin sideband in polar coordinates with r < 10 and $\theta \in [-0.1\pi, 0.4\pi]$
- Consider bins that are least populated in background in this template
 - Loop over these bins and select events from SR in these bins until at least 200 events selected

AD1 - CWoLa Hunting

- Assume signal is a narrow resonance and choose a mass window that is defined as SR (signal region) signal enriched
- Define sidebands (SB) on either side of SR background dominated
- Train classifier to distinguish SR from SB
- Use separate per-jet classifiers for heavier and lighter jet in each event
- Select events as per defined anomaly metric function of classifier scores
- Jet features must be uncorrelated with m_{.u}
 - Reweight SR events accordingly to match jet p_{τ} in SB

AD2 - Tag N' Train (TNT)

- Similar to CWoLa but uses a CNN-based Autoencoder for creating purer samples
- Tag first (second) jet in event as signal/background like using autoencoder score
 Create mixed samples of second (first) jet in the event
- Samples can be combined since J1 and J2 labels are random
- Train new NN classifier using weak supervision

AD3 - CATHODE

- Train conditional normalizing flow to learn p_{Bkg}(x|SB)
- Interpolate into SR: $p_{bka}(x|SR)$ using flow
- Train classifier to distinguish data in SR: p_{Sig+Bkg}(x|SR) from interpolated events
- Noticeable improvement in classification performance

CATHODE-b: Uses DeepB scores as additional feature for training normalizing flow

AD5 - QUAK

Karlsruhe Institute of Technology

Idea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

- Every event mapped into a unique point in a 2D QUAK space
 - X-axis value comes from log-likelihood of event in normalizing flow trained on simulated QCD background events
 - Y-axis value comes from combining log-likelihood of event passed through 6 normalizing flows trained on different signal priors
 - Values normalized so background centered at (0,0)
- Select events by creating a unique 2D contour for each signal mass hypothesis designed to exclude background events
 - Contour created by using sidebands around hypothesis mass window (should be dominated by background)

