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I Overview A\‘(IT

Karlsruhe Institute of Technology

K/
*®

Target dijet topologies with both jets clustered using /
anti-k; (R=0.8) R

<  Search for a narrow resonance of the form A —-BC ®
Interesting?
s  Exploit jet substructure - anomalous jets may have
(multiple) prongs

K/
*®

Total of 5 complementary machine learning
techniques - each with its own strengths

Not so interesting
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I Designing an Anomaly Tagger &(IT

Karlsruhe Institute of Technology

% Supervised learning - Train on MC with labelled examples
% Unsupervised approach - Train directly on data to avoid specific signal model bias

% All but one of the five methods use only data for training

Weak Supervision: Unsupervised (Autoencoder based)

e VAE-QR
CWoLa Hunting

Tag N’ Train (TNT) Semi-supervised

Classifying Anomalies THrough Outer e QUasi Anomalous Knowledge (QUAK)
Density Estimation (CATHODE)

Trained on sideband, learns QCD distribution
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I Unsupervised Learning with Autoencoders (VAE-QR) A\‘(IT

Karlsruhe Institute of Technology

e Autoencoder-based anomaly search - train a network to “reconstruct” jets from a
QCD-dominated control region and apply to data from signal region

e Anomaly metric = network loss

e Decorrelate loss from m  using a DNN based Quantile Regression (QR) - reduces
background “sculpting”

Py Py
<y
P P =
g v QR =
~—
P, P, .é
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I Weak Supervision Paradigm A\‘(IT
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Mixed Sample 1 Mixed Sample 2
COOeO | | ©COO® % Train classifier to distinguish data from a background-like
OO0 OIO1C1CL6) sample — different proportions of signal
0000 ©ee00 > In practice: two sidebands defined on either side of a
?%%g% gg:?g narrow signal region
\0 1/ % No signal — Classifier learns random noise
Classifier

K/
L X4

Three methods in total:

> CWola: background events selected from sideband
defined on either side of narrow signal region

> TNT.: Additional autoencoder preselection, designed
for events with 2 anomalous jets

> CATHODE: Uses normalizing flows to interpolate
background from sideband into signal region

mixed sample 2

dN/dMres
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I Semi-supervised learning: QUAK ﬂ(IT

|dea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

e Every event mapped into a unique point in a 2D QUAK space

o Use different normalizing flows trained on QCD §
background MC and (mixture of) signal MC =
©
2| 2D QUAK
e The signal lies somewhere in that space and the background Space =
lies somewhere else §
©
9]
e Select events by creating a unique 2D contour for each signal 0,0 Background Loss

mass hypothesis designed to exclude background events
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What can we do with this?

SKIT

Karlsruhe Institute of Technology

i CMS simulation Preliminary (13 TeV)
> =1 IR L B L R —
. . ()] = ] w =
% Choose a working point and select events to look at O ek BRI e 3
8 B —4— Simulated Pseudodata 3
NI L == signal + Background Fit _
» E —— Signal 3
. _ g 10 é Background é
< Perform a bump hunt on the m ; spectrum and look for interesting @ - indt =27.11/31 =087 3
T 108 = Prob = 0.667 —
deviations i i
>  QCD background is smoothly falling 10
> Signal is a narrow resonance - can be modelled using a Double 10E
Crystal Ball function 1;_
CMS 138fb~" (13 TeV) r 4? =l : :_
g CATHODE, X(3000) - Y(170)Y'(170) uT_ ) 2j i
§207 +— Acceptance x Efficiency %S O_ 1
g ol —2[ 7
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=)

! I | | | |

‘g +— Selected Signal Events Ngq(0) DlJet invariant mass (Gev)

D 200 sig . .

o = Cpenstine We use (almost) no MC for training

> 68% Expected

-E 150

2 125} > But can use it to set limits on various signal models
foog > Never been done before for most models we look at
;z > For weakly supervised methods - do this by injecting various cross sections of
ol signal into data and training a classifier each time

o

2.0
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What did we see? A\‘(IT
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e All methods report no significant deviation from the Standard Model in CMS Run Il
data (recorded during the period 2016-18) at a total integrated luminosity of 137 fb"

e Remember that these searches are model agnostic - goal is to show broad sensitivity
by setting limits on a range of signals

[GRVE CMS Experiment at the LHC, CERN
# Data recorded: 2018-Sep-06 05:06:55.343296 GMT
Run / Event/ 322332/ 851591650 / 487

CMS Press Release, May 2024
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https://cms.cern/news/can-ai-find-new-particles-its-own

Bump hunting A“(IT
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1050MS 138 fo~' (13 TeV) - 10,CMS 138 fb~' (13 TeV)
> L B B B LI B T T T !
& [ CATHODE: aSignal Regions -+ Data & VAE-QR -+ Data
105 . : i
8 ‘O‘\ — Bkg.fit § 8 e g?e'\?txwv'—mq
~ F ] ~ 105w ) . .
« Use generic signal shape to £ 0l 1 2 o -- 5TeVWBt-bZt
scan for potential anomalies :3’ st 1 E il 4
across entire dijet mass 10°F \ E 107
spectrum -
10"
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observed by any method o \ 0
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Expected Significances A\‘(IT

% Inject signal into a toy
background MC dataset and
calculate expected
significances

% Improved performance with
higher daughter particle
masses in general

> W —B't—qqqqqq

Aritra Bal (aritra.bal@kit.edu)

Test with a 3 pronged signal:

Karlsruhe Institute of Technology

CMS simulation
g 1 | | |
S 107
Q- ’ !
W - Bt—- bzt
10-3|- -= VAE-QR
—+— CWolLa Hunting
—a— TNT
10°F —« CATHODE
-u— CATHODE-b
QUAK
107}
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Discovery Potential at 3 TeV A“(IT
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CMS 138fb~" (13 TeV)
:-Q\ 108 3 3 TeV Resonances E
= : % 30 Significance + ® VAE-QR
-2 L o 50 Significance + ® CWola Hunting
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I Limits - 3 TeV T
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K/
L 4

Look at all sorts of signals with varying degrees of
substructure and pronginess

K/
L 4

All unsupervised methods work better than an inclusive or
cut-based approach

K/
L 4

Not comparable to dedicated searches
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Limits - 3 TeV

CMS 138fb~1 (13 TeV)
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Comparing Methods A\‘(IT

Karlsruhe Institute of Technology

% In general - no strong correlations between methods

« TNT and CWoLa are the most correlated — expected since the difference lies in the autoencoder
preselection

CMS Simulation Preliminary (13 TeV) CMS Simulation Preliminary (13 TeV)
VAE} 0.15 0.17 0.39 0.44 VAE} 0.33 0.24 0.11 0.22
CWola Huntingl- 0.15 0.65 0.18 0.14 CWola Hunting{~ 0.33 0.70 0.47 0.36
TNT[ 0.17 0.65 0.25 0.30 TNT[ 0.24 0.70 0.31 0.26
CATHODE| 0.39 0.18 0.25 0.62 CATHODE| 0.11 0.47 0.31 0.51
QUAK|- 0.44 0.14 0.30 0.62 . QUAK|- 0.22 0.36 0.26 0.51 A
% & X 2 & & ¥
\ S S 9 F ¥ S S 9 §
NG N NI
\,’D OV‘ \,0 c)?“
° 9
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I Summary and Conclusions A“(IT

Karlsruhe Institute of Technology

K/
°

First results on data from the CMS Detector, using Unsupervised
Anomaly Detection techniques

K/
°

Methods are sensitive to a broad range of signals - could flag any
interesting deviations to direct dedicated searches

K/
°

Lots of scope for future work in anomaly detection with CMS - this
was just the beginning

K/
°

Results already available on CDS [CMS-EXO-22-026] and will soon
appear in a journal - stay tuned!

CMS-EX0O-22-026
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https://cds.cern.ch/record/2892677?ln=en

SKIT

Karlsruhe Institute of Technology

BACKUP
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SKIT

Karlsruhe Institute of Technology
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I CASE: Input Features A\‘(IT

Karlsruhe Institute of Technology

> VAE: pT, n, ¢ of leading 100 particle flow constituents (per jet)
> CWola, TNT: mSD, 121, 132, 143, nPF, LSF3, b-tagging score (per jet)
> CATHODE: mSD1, mSD1 - mSD2, 141,1, 141,2 (per event)

> QUAK: mSD, 121, 132, 143, V121/11, M/pT (for each jet, per event)
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I Control Region Definition ﬂ(IT

" 109CMSPreIiminary 137.64 fo-' (13 TeV)
e I o A * Signal region |An| < 1.3
+jets " =2 , My = 3 3 e
“r =i T oow — * Control region 2.0 < |An| < 2.5 + additional
107} Control : cuts

egion « Extra cuts further suppress signal

contam
* Ensure signal reduction is at least 10x

Full Control Region Selection

(2.0 < Ay <25
No jet extra with py > 300 GeV

R S ' AND ¢ PT1— P12
sIS‘: ......................... : or ! |miFrma| > 01
.............................................. \ = e +2)/m,3,~ £ 0951]
% 1 3 3 3 5
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I Weak Supervision &(IT

Karlsruhe Institute of Technology

Bin Name Range (GeV) Eff. Cut Signal Masses ( GeV) Num. data events
A0 1350-1650 - - 13.8M
Al 1650-2017 1% 1800, 1900 45M
A2 2017-2465 1% 2200, 2300 1.4M
A3 2465-3013 1% 2600, 2700, 2800 400k
Ad 3013-3682 3% 3200, 3300, 3400, 3500 100k
A5 3682-4500 3% 3900, 4100, 4200, 4300 22k
A6 4500-5500 5% 4800, 4900, 5000, 5100, 5200 3.9k
A7 5500-8000 - - 479
BO 1492-1824 - - 6.6M
B1 1824-2230 1% 2000, 2100 2.1M
B2 2230-2725 1% 2400, 2500 630k
B3 2725-3331 1% 2900, 3000, 3100 170k
B4 33314071 3% 3600, 3700, 3800 42k
B5 40714975 3% 4400, 4500, 4600, 4700 8.5k
B6 4975-6081 5% 5300, 5400, 5500, 5600, 5700, 5800 1.3k
B7 6081-8000 - - 144

Mg, Ty, Tar Tgy, NHpp, LSF;,  DeepB
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I CWola AT

Karlsruhe Institute of Technology

e Reweight events in SR and SB:
o  Upper and low mass sidebands reweighted to have same weight
o  Signal region also re-weighted to have weight equal to both SBs
o  Finally, reweight SR jets to have same p.. distribution as SB jet

e Two different network architectures used in different signal regions to prevent overfitting
o  Smaller network with O(3.6k) parameters used when SR events < 10k
o Larger network with O(30k) parameters used otherwise

e Combining CWolLa scores (since there are 2 per-jet classifiers):
o  Convert each score to %ile using their distributions
o Event anomaly score = max(S,,S,)
o Finally define threshold as anomaly score that selects events with given efficiency (see table) in
weighted average of sidebands, and use across whole mass spectrum for that SR

CWolLa + TNT inputs:

My, Toy, T3p, Tg3r NHpp, LSF;,  DeepB
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I CATHODE T

Karlsruhe Institute of Technology

e Conditional normalizing flow - uses m  as conditional input
e Train separate density estimator for m , using a Gaussian Kernel Density Estimator

e f'(z,m) with z~N"(0,1) and m~KDE(m, ) is used to generate synthetic samples
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I Autoencoders: Basics

0.4

0.2

Aritra Bal (aritra.bal@kit.edu)

neural network

encoder

neural network

decoder

QCD

g (400 GeV)

|
s

107

10-¢ 103
Reconstruction Error

10-*

SKIT

Karlsruhe Institute of Technology

e Goal: Pass through information bottleneck to reconstruct input
e Hidden (Latent) space: learns most important features

e Train on QCD sideband so network learns background but not
signal - use reconstruction loss as anomaly metric

e Signal - high reconstruction loss
e Background - low reconstruction loss

e Variational Autoencoder: Gaussian latent space
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I VAE AT

Karlsruhe Institute of Technology

Latent space size of 12

Training uses Chamfer loss + Kullback-Leibler divergence of between
latent space & Gaussian

Cross validation with 4 folds used for Quantile Regression
- Average QR fit of other 3 folds used when selecting events on 4th
QR fits use dense NN with 5 layers and 30 nodes per layer
Three categories used in limit setting

- Cat1: Most anomalous 1% (>99%)

- Cat2: Next most anomalous 4% (95-99%)

- Cat3: Next most anomalous 5% (90-95%)

In model-indep search, use single category, >90%

3-category fit: Use above defined three categories, fully correlate the backgrounds and fit with a single function
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I QUAK A\‘(IT

Karlsruhe Institute of Technology

e Uses Masked Autoregressive Rational Quadratic Spline (RQS) flows
e Chain of analysis:

1. Calculate the spline parameters:

0/

w,’

o

h,i’

j 11
ejd,z' =NN(z")

1

where 0, 8, and 6; specify the bin widths along the input (w), output (&) dimensions,
and the internal derivatives (d).

2. Use the parameters to evaluate the spline and update the input:

Zf — RQSBJ'( 0] 9;@ (ZLI)

w,i’VhiYd,i

3. Repeat for all j = 1, .., D (D = dimensionality of input z).
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I QUAK selection A\‘(IT
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e Evaluate NLL Loss of each different model (1 bkg + 6 signal) on inputs
e Perform loss reduction on signal losses to get 2D loss vector

1. (Mg, M¢) = (80,80): the only signal sample used here was XYY2000_Y80_Yp80.

2. (Mg, M¢) = (80,170): combination of Wkk2000_R170, Wkk3000_R170, Wp2000_B80_T170,
Wp3000-B80_T170, and XYY2000-Y80_Yp170 events.

3. (Mg, M) = (80,400): combination of Wkk2000_R400, Wkk3000_R400, XYY2000_Y400_Yp80,
XYY2000_Y80_Yp400, and XYY3000_Y80_Yp400 events.

4. (Mg, Mc) = (170,170): combination of Wp2000-B170-T170, Wp3000_-B170_T170, and
XYY3000-Y170_Yp170 events.

5. (Mg, M¢) = (170,400): combination of Wp2000_B400-T170, Wp3000-B400_T170, XYY2000-Y170_Yp400,
XYY2000-Y400-Yp170, and XYY3000-Y400_Yp170 events.

6. (Mg, M) = (400,400): combination of YHH2000-H400, YHH3000-H400, ZTT2000_-Tp400,
and ZTT3000_Tp400 events.
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I QUAK Selection A\‘(IT
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e Construct 2D QUAK Space with bkg and sig losses as described
Select top X% of events with highest bkg. Loss and bin surviving in 2D QUAK space
e Forgiven m, define

o SR:[m,-400, m, +200] GeV

o SBs:[m,-900, m,-400] GeV and [m, + 200, m , + 700] GeV

e Background template: Bin sideband in polar coordinates withr <10 and 8 € [-0.111,0.411]
e Consider bins that are least populated in background in this template
o Loop over these bins and select events from SR in these bins until at least 200 events
selected

90°

10°
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I AD1 - CWolLa Hunting

Assume signal is a narrow resonance and choose a mass window
that is defined as SR (signal region) - signal enriched

Define sidebands (SB) on either side of SR - background
dominated

Train classifier to distinguish SR from SB

Use separate per-jet classifiers for heavier and lighter jet in each
event

Select events as per defined anomaly metric - function of classifier
scores

Jet features must be uncorrelated with m |
o  Reweight SR events accordingly to match jet p_in SB

Aritra Bal (aritra.bal@kit.edu) Institute for Experimental Particle Physics (ETP), KIT

SKIT
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mixed sample 2

VAN

©
aQ
=
@
@ background
%
signal =
A -
Mres
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AD2 - Tag N’ Train (TNT) A\‘(IT

Karlsruhe Institute of Technology

e Similar to CWolLa - but uses a CNN-based Autoencoder for creating purer samples

e Tag ( ) jet in event as signal/background like using autoencoder score
o Create mixed samples of (first) jet in the event

e Samples can be combined since J1 and J2 labels are random

e Train new using weak supervision
- Initial Weakly Merge Train New
Grouping Classification Classified Events Samples Classifier
Sig Like Works only if both jets in event

2x \
Sig Like Jets Sig Rlcj
Bkg Like

J2's

are anomalous

J1 Classification

'J1' and 'J2' labels

: New Classifier
randomly assigned

e Same p, reweighting procedure

< s 4 J as CWola
Bkg Rich

J2 Classification ‘ Bkg Like Jets “

Bkg lee
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AD3 - CATHODE A\‘(IT

Karlsruhe Institute of Technology

e Train conditional normalizing flow to learn kag(x|SB)
e Interpolate into SR: pbkg(x|SR) using flow
e Train classifier to distinguish data in SR: pSig+Bkg(x|SR) from | ™
interpolated events (™ train "outer densit
eS o' on SB to learn

Pbs(X|SB)

e Noticeable improvement in classification performance take asampleof | | bgl
_events from SR |

isample from interpolated“
density estimator

Pbg(X|SR)

l

)|
|
OO0
CATHODE-b: Uses DeepB scores AOLO] ;‘

as additional feature for training llabel=‘l ltabel=0

normalizing flow 2 ”
train classifier
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I AD5 - QUAK AT

|dea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

e Every event mapped into a unique pointin a 2D
QUAK space

X-axis value comes from log-likelihood of event in
normalizing flow trained on simulated QCD background 2D QUAK

events Space

o  Y-axis value comes from combining log-likelihood of event
passed through 6 normalizing flows trained on different
signal priors

o  Values normalized so background centered at (0,0)

e Select events by creating a unique 2D contour for
each signal mass hypothesis designed to exclude

background events
o  Contour created by using sidebands around hypothesis
mass window (should be dominated by background)

Signal Loss

Selection

0,0 Background Loss
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