

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at \sqrt{s} = 13 TeV

ML4Jets 2024, Paris

Aritra Bal (Karlsruhe Institute of Technology)

For the CMS Collaboration

Aritra Bal (aritra.bal@kit.edu) **Institute for Experimental Particle Physics (ETP), KIT ML4Jets 2024 - Paris**

Overview

- ❖ Target dijet topologies with both jets clustered using anti-k_⊤ (R=0.8)
- \div Search for a narrow resonance of the form A → BC
- ❖ Exploit jet substructure anomalous jets may have (multiple) prongs
- ❖ Total of 5 complementary machine learning techniques - each with its own strengths

Designing an Anomaly Tagger

- ❖ Supervised learning Train on MC with labelled examples
- ❖ Unsupervised approach Train directly on data to avoid specific signal model bias
- ❖ All but one of the five methods use only data for training

Weak Supervision:

- **●** *CWoLa* Hunting
- Tag N' Train (*TNT*)
- Classifying Anomalies THrough Outer Density Estimation (*CATHODE*)

Unsupervised (Autoencoder based) *● VAE-QR*

Semi-supervised

● *QU*asi *A*nomalous *K*nowledge (*QUAK*)

Trained on sideband, learns QCD distribution

Unsupervised Learning with Autoencoders (VAE-QR)

- Autoencoder-based anomaly search train a network to "reconstruct" jets from a QCD-dominated control region and apply to data from signal region
- Anomaly metric = network loss
- Decorrelate loss from m_{11} using a DNN based Quantile Regression (QR) reduces background "sculpting"

Weak Supervision Paradigm

- ❖ Train classifier to distinguish **data** from a **background**-like sample \rightarrow different proportions of signal
	- \triangleright In practice: two sidebands defined on either side of a narrow signal region
- \triangle No signal \rightarrow Classifier learns random noise
- ❖ Three methods in total:
	- ➢ **CWoLa**: background events selected from sideband defined on either side of narrow signal region
	- ➢ **TNT**: Additional autoencoder preselection, designed for events with 2 anomalous jets
	- ➢ **CATHODE**: Uses normalizing flows to interpolate background from sideband into signal region

Semi-supervised learning: QUAK

Karlsruhe Institute of Technolog

Idea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

- Every event mapped into a unique point in a 2D QUAK space
	- Use different normalizing flows trained on QCD background MC and (mixture of) signal MC
- The signal lies somewhere in that space and the background lies somewhere else
- Select events by creating a unique 2D contour for each signal mass hypothesis designed to exclude background events

What can we do with this?

 (13) TeV)

- ❖ Choose a working point and select events to look at
- \bullet Perform a bump hunt on the m₁₁ spectrum and look for interesting deviations
	- \triangleright QCD background is smoothly falling
	- \triangleright Signal is a narrow resonance can be modelled using a Double Crystal Ball function

We use (almost) no MC for training

- \triangleright But can use it to set limits on various signal models
- \triangleright Never been done before for most models we look at
- \triangleright For weakly supervised methods do this by injecting various cross sections of signal into data and training a classifier each time

CMS Simulation Preliminary

What did we see?

- All methods report no significant deviation from the Standard Model in CMS Run II data (recorded during the period 2016-18) at a total integrated luminosity of 137 fb-1
- Remember that these searches are model agnostic goal is to show broad sensitivity by setting limits on a range of signals

Bump hunting

- ❖ Use generic signal shape to scan for potential anomalies across entire dijet mass spectrum
- ❖ No significant deviation observed by any method

Expected Significances

Karlsruhe Institute of Technology

- ❖ Inject signal into a toy background MC dataset and calculate expected significances
- ❖ Improved performance with higher daughter particle masses in general
- ❖ Test with a 3 pronged signal:
	- \triangleright W \rightarrow B' t \rightarrow qqq qqq

Discovery Potential at 3 TeV

- ❖ Compare methods by benchmarking on several signal models
- ❖ Find what injected cross section of signal would lead to a 3σ/5σ significance
- ❖ Better than inclusive, or simple cuts

Limits - 3 TeV

Comparing Methods

- ❖ In general no strong correlations between methods
- \cdot TNT and CWoLa are the most correlated \rightarrow expected since the difference lies in the autoencoder preselection

Summary and Conclusions

-
- ❖ First results on data from the CMS Detector, using Unsupervised Anomaly Detection techniques
- ❖ Methods are sensitive to a broad range of signals could flag any interesting deviations to direct dedicated searches
- ❖ Lots of scope for future work in anomaly detection with CMS this was just the beginning
- ❖ Results already available on [CDS](https://cds.cern.ch/record/2892677?ln=en) [**CMS-EXO-22-026**] and will soon appear in a journal - stay tuned!

CMS-EXO-22-026

BACKUP

- \triangleright VAE: pT, n, ϕ of leading 100 particle flow constituents (per jet)
- \triangleright CWoLa, TNT: mSD, $T21$, $T32$, $T43$, nPF, LSF3, b-tagging score (per jet)
- \ge CATHODE: mSD1, mSD1 mSD2, T 41,1, T 41,2 (per event)
- \triangleright QUAK: mSD, τ21, τ32, τ43, \sqrt{T} 21/τ1, M/pT (for each jet, per event)

Control Region Definition

- Signal region $|\Delta n|$ < 1.3
- Control region $2.0 < |\Delta \eta| < 2.5 +$ additional cuts
	- Extra cuts further suppress signal \bullet contam
	- Ensure signal reduction is at least 10x

Full Control Region Selection

$$
\text{AND} \left\{ \begin{aligned} &2.0 < \Delta \eta < 2.5 \\ &\text{No\ jet\ extra\ with\ } p_{\text{T}} > 300 \text{ GeV} \\ &\text{OR} \left\{ \frac{p_{\text{T},1} - p_{\text{T},2}}{p_{\text{T},1} + p_{\text{T},2}} \right| > 0.1 \\ &A = p_{\text{T},1} p_{\text{T},2} (2 \cosh \Delta \eta + 2) / m_{jj}^2 \notin [0.95,1] \end{aligned} \right.
$$

Weak Supervision

 $m_{\rm sd},\quad \tau_{21},\quad \tau_{32},\quad \tau_{43},\quad n_{\rm PF},\quad \mathrm{LSF}_3,\quad \mathrm{DeepB}$

CWoLa

- Reweight events in SR and SB:
	- Upper and low mass sidebands reweighted to have same weight
	- Signal region also re-weighted to have weight equal to both SBs
	- \circ Finally, reweight SR jets to have same p_T distribution as SB jet
- Two different network architectures used in different signal regions to prevent overfitting
	- \circ Smaller network with O(3.6k) parameters used when SR events \leq 10k
	- Larger network with O(30k) parameters used otherwise
- Combining CWoLa scores (since there are 2 per-jet classifiers):
	- Convert each score to %ile using their distributions
	- \circ Event anomaly score = max(S₁,S₂)
	- Finally define threshold as anomaly score that selects events with given efficiency (see table) in weighted average of sidebands, and use across whole mass spectrum for that SR

CWoLa + TNT inputs:

 m_{sd} , τ_{21} , τ_{32} , τ_{43} , n_{PF} , LSF₃, DeepB

CATHODE

- Conditional normalizing flow uses m_{11} as conditional input
- Train separate density estimator for m_{jj} using a Gaussian Kernel Density Estimator
- \bullet f⁻¹(z,m) with z~Nⁿ(0,1) and m~KDE(m_{JJ}) is used to generate synthetic samples

Autoencoders: Basics

- Goal: Pass through information bottleneck to reconstruct input
- Hidden (Latent) space: learns most important features
- Train on QCD sideband so network learns background but not signal - use reconstruction loss as anomaly metric
- Signal high reconstruction loss
- Background low reconstruction loss
- Variational Autoencoder: Gaussian latent space

- **VAE**
	- Latent space size of 12
	- Training uses Chamfer loss + Kullback-Leibler divergence of between latent space & Gaussian
	- Cross validation with 4 folds used for Quantile Regression
		- Average QR fit of other 3 folds used when selecting events on 4th
	- QR fits use dense NN with 5 layers and 30 nodes per layer
	- Three categories used in limit setting
		- Cat1: Most anomalous 1% (>99%)
		- Cat2: Next most anomalous 4% (95-99%)
		- Cat3: Next most anomalous 5% (90-95%)
	- In model-indep search, use single category, >90%

3-category fit: Use above defined three categories, fully correlate the backgrounds and fit with a single function

QUAK

- Uses Masked Autoregressive Rational Quadratic Spline (RQS) flows
- Chain of analysis:
	- 1. Calculate the spline parameters:

$$
\theta_{w,i}^j, \theta_{h,i}^j, \theta_{d,i}^j = NN(z_i^{1:j-1})
$$

where θ_w , θ_h , and θ_d specify the bin widths along the input (*w*), output (*h*) dimensions, and the internal derivatives (d) .

2. Use the parameters to evaluate the spline and update the input:

$$
z_i^j = \text{RQS}_{\theta_{w,i}^j, \theta_{h,i}^j, \theta_{d,i}^j} (z_{i-1}^j)
$$

3. Repeat for all $j = 1, ..., D$ (*D* = dimensionality of input **z**).

QUAK selection

- Evaluate NLL Loss of each different model (1 bkg $+$ 6 signal) on inputs
- Perform loss reduction on signal losses to get 2D loss vector
- 1. $(M_R, M_C) = (80, 80)$: the only signal sample used here was XYY2000_Y80_Yp80.
- 2. $(M_B, M_C) = (80, 170)$: combination of Wkk2000_R170, Wkk3000_R170, Wp2000_B80_T170, Wp3000_B80_T170, and XYY2000_Y80_Yp170 events.
- 3. $(M_B, M_C) = (80, 400)$: combination of Wkk2000_R400, Wkk3000_R400, XYY2000_Y400_Yp80, XYY2000_Y80_Yp400, and XYY3000_Y80_Yp400 events.
- 4. (M_B, M_C) = (170, 170): combination of Wp2000_B170_T170, Wp3000_B170_T170, and XYY3000_Y170_Yp170 events.
- 5. $(M_B, M_C) = (170, 400)$: combination of Wp2000_B400_T170, Wp3000_B400_T170, XYY2000_Y170_Yp400, XYY2000_Y400_Yp170, and XYY3000_Y400_Yp170 events.
- 6. $(M_B, M_C) = (400, 400)$: combination of YHH2000_H400, YHH3000_H400, ZTT2000_Tp400, and ZTT3000_Tp400 events.

QUAK Selection

- Construct 2D QUAK Space with bkg and sig losses as described
- Select top X% of events with highest bkg. Loss and bin surviving in 2D QUAK space
- For given m_H define
	- \circ SR: $[m_{H} 400, m_{H} + 200]$ GeV
	- SBs: [m_H 900, m_H 400] GeV and [m_H + 200, m_H + 700] GeV
- Background template: Bin sideband in polar coordinates with $r < 10$ and $\theta \in [-0.1\pi, 0.4\pi]$
- Consider bins that are least populated in background in this template
	- Loop over these bins and select events from SR in these bins until at least 200 events selected

AD1 - CWoLa Hunting

- Assume signal is a narrow resonance and choose a mass window that is defined as SR (signal region) - signal enriched
- Define sidebands (SB) on either side of SR background dominated
- Train classifier to distinguish SR from SB
- Use separate per-jet classifiers for heavier and lighter jet in each event
- Select events as per defined anomaly metric function of classifier scores
- Jet features must be uncorrelated with m_D
	- \circ Reweight SR events accordingly to match jet p_{τ} in SB

AD2 - Tag N' Train (TNT)

- Similar to CWoLa but uses a CNN-based Autoencoder for creating purer samples
- Tag first (second) jet in event as signal/background like using autoencoder score ○ Create mixed samples of second (first) jet in the event
- Samples can be combined since J1 and J2 labels are random
- Train new NN classifier using weak supervision

AD3 - CATHODE

- Train conditional normalizing flow to learn $p_{Bkg}(x|SB)$
- Interpolate into SR: $p_{bka}(x|SR)$ using flow
- Train classifier to distinguish data in SR: $p_{Siq+Bkg}(x|SR)$ from interpolated events
- Noticeable improvement in classification performance

CATHODE-b: Uses DeepB scores as additional feature for training normalizing flow

AD5 - QUAK

Karlsruhe Institute of Technolog

Idea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

- Every event mapped into a unique point in a 2D QUAK space
	- X-axis value comes from log-likelihood of event in normalizing flow trained on simulated QCD background events
	- Y-axis value comes from combining log-likelihood of event passed through 6 normalizing flows trained on different signal priors
	- Values normalized so background centered at (0,0)
- Select events by creating a unique 2D contour for each signal mass hypothesis designed to exclude background events
	- Contour created by using sidebands around hypothesis mass window (should be dominated by background)

