

An implementation of Neural Simulation-Based Inference for Parameter **Estimation in ATLAS**

ML4Jets2024 07 November 2024

universite **PARIS-SACLAY**

Arnaud Maury, on behalf of the ATLAS Collaboration

Run 2 analysis of the off-shell Higgs boson decaying into four leptons

- 1 analysis, 2 papers:
- A Physics measurement paper: <u>https://atlas.web.cern.ch/Atlas/GROUPS/</u>

 An ML-focused methodology paper (this talk): <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/</u>

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/

2

The motivation for Neural Simulation-Based Inference (NSBI)

- Detector has O(100 million) sensors
- Can't build 100M dimensional histogram
- Reconstruction pipeline, event selection
- Design sensitive one-dimensional observable

Typical LHC Workflow

Density Estimation: What we're used to doing.

Measure signal strength μ

With histograms we can ask "Given the data, what is the likelihood of $\mu = 1$ hypothesis vs $\mu = 2$ hypothesis?"

Density Estimation: What we're used to doing.

Measure signal strength μ

With histograms we can ask "Given the data, what is the likelihood of $\mu = 1$ hypothesis vs $\mu = 2$ hypothesis?"

New challenge: Non-linear changes in kinematics (w.r.t. parameter of interest)

A histogram of any single observable is no longer optimal (see Ghosh et al: hal-02971995(p172)), but neural networks estimate high-dimensional likelihood ratios (see Cranmer et al: arXiv:1506.02169) !

Campbell et al: arXiv:1311.3589

New challenge: Non-linear changes in kinematics (w.r.t. parameter of interest)

A histogram of any single observable is no longer optimal (see Ghosh et al: hal-02971995(p172)), but neural networks estimate high-dimensional likelihood ratios (see Cranmer et al: arXiv:1506.02169) !

"Neural Simulation-Based Inference"

High-dim data

The neural inference framework:

Traditional framework:

 μ is now arbitrary parameter of interest(s)

"Neural Simulation-Based Inference"

The neural inference framework:

 μ is now arbitrary parameter of interest(s)

Open problems to extend to full ATLAS analysis:

- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them into likelihood (ratio) model
- Neyman Construction: Sampling pseudo-experiments in a per-event analysis

Open problems to extend to full ATLAS analysis:

- Robustness: Design and validation
- Systematic Uncertainties: Incorporate them into likelihood (ratio) model
- Neyman Construction: Sampling pseudo-experiments in a per-event analysis

9

$$p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j p_j(x_i)$$

General Formula

j runs over different physics process (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

Example use case

General Formula

$$p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j p_j(x_i)$$

 $\begin{aligned} \text{Example use case} \\ p_{\text{ggF}}(x|\mu) &= \frac{1}{\nu_{\text{ggF}}(\mu)} \left[\left(\mu - \sqrt{\mu}\right) \nu_{S} \, p_{S}(x) + \sqrt{\mu} \, \nu_{\text{SBI}_{1}} \, p_{\text{SBI}_{1}}(x) + \left(1 - \sqrt{\mu}\right) \nu_{\text{B}} \, p_{\text{B}}(x) \right] \end{aligned}$

j runs over different physics process (Eq. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

General Formula $p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{i} f_j(\mu) \cdot \nu_j p_j(x_i)$ Known analytically from theory model Example use case $p_{ggF}(x|\mu) = \frac{1}{\nu_{\sigma\sigma F}(\mu)} \left[(\mu - \sqrt{\mu}) v_{S} p_{S}(x) + \sqrt{\mu} v_{SBI_{1}} p_{SBI_{1}}(x) + (1 - \sqrt{\mu}) v_{B} p_{B}(x) \right]$

General Formula

j runs over different physics process (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

Known analytically from theory model

Example use case

General Formula

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_i)}{p_{\text{ref}}(x_i)}$$

j runs over different physics process (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

Known analytically from theory model

Example use case

$$\sqrt{\mu} v_{\text{SBI}_1} p_{\text{SBI}_1}(x) + (1 - \sqrt{\mu}) v_{\text{B}} p_{\text{B}}(x)$$

 $p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{i=1}^{c} f_j(\mu) \cdot \nu_j p_j(x_i)$ Event rates estimated from simulations $p_{ggF}(x|\mu) = \frac{1}{\nu_{ggF}(\mu)} \left[\left(\mu - \sqrt{\mu}\right) \nu_{S} p_{S}(x) + \sqrt{\mu} \right]$ $\frac{p(x|\mu)}{p_{\rm S}(x)} = \frac{1}{v(\mu)} \left[\left(\frac{1}{p_{\rm S}(x)} - \frac{1}{p_{\rm S}(x)} \right) \right] \left[\left(\frac{1}{p_{\rm S}(x)} - \frac{1}{p_{\rm S}(x)} \right) \right] \left[\frac{1}{p_{\rm S}(x)} - \frac{1}{p_{\rm S}(x)} \right] \left[\frac{1}{p_{\rm S}(x)} - \frac$

General Formula

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_i)}{p_{\text{ref}}(x_i)}$$

j runs over different physics process (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

Known analytically from theory model

Example use case

$$\sqrt{\mu} \, \nu_{\mathrm{SBI}_1} \, p_{\mathrm{SBI}_1}(x) + (1 - \sqrt{\mu}) \nu_{\mathrm{B}} \, p_{\mathrm{B}}(x) \Big]$$

$$(\mu - \sqrt{\mu}) v_{S} + \sqrt{\mu} v_{SBI_{1}} \frac{p_{SBI_{1}}(x)}{p_{S}(x)} + (1 - \sqrt{\mu}) v_{B} \frac{p_{B}}{p_{S}}$$

10

Gene $p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{i=1}^{C} f_i(\mu) (\nu_j) p_j(x_i)$ Event rates estimated from simulations Know Exam $p_{ggF}(x|\mu) = \frac{1}{v_{ggF}(\mu)} \left[(\mu - \sqrt{\mu}) v_S p_S(x) + v_S p_S(x$ $\frac{p(x|\mu)}{p_{\rm S}(x)} = \frac{1}{\nu(\mu)} \left[\left(\frac{1}{p_{\rm S}(x)} - \frac{1}{p_{\rm S}(x)} \right) \right] \left[\frac{1}{p_{\rm S}(x)} - \frac{1}{p_{\rm S}(x)} \right] \left[\frac{1}{p_{\rm S}(x)} - \frac{1}{p_$

eral Formula
Estimated using an ensemble of network

$$\frac{p(x_i|\mu)}{p_{ref}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_i)}{p_{ref}(x_i)}$$

$$j \text{ runs over different physics proce}$$

$$(Eg. gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow ban analytically from theory model$$
ple use case

$$\sqrt{\mu} \nu_{SBI_1} p_{SBI_1}(x) + (1 - \sqrt{\mu})\nu_B p_B(x)]$$

$$\mu - \sqrt{\mu} v_{S} + \sqrt{\mu} v_{SBI_{1}} \frac{p_{SBI_{1}}(x)}{p_{S}(x)} + (1 - \sqrt{\mu}) v_{B} \frac{p_{B}}{p_{S}}$$

 $\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{i}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_i)}{p_{\text{ref}}(x_i)}$

A separate classifier per physics process j (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

11

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_j)}{p_{\text{ref}}(x_j)}$$

A separate classifier per physics process j (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

11

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_j)}{p_{\text{ref}}(x_j)}$$

11

(Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_j)}{p_{\text{ref}}(x_j)}$$

11

(Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

$$\frac{p(x_i|\mu)}{p_{\text{ref}}(x_i)} = \frac{1}{\nu(\mu)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \frac{p_j(x_j)}{p_{\text{ref}}(x_j)}$$

Reference Sample

A combination of signal samples, to ensure there's non-vanishing support in pre-selected region

$$p_{\text{ref}}(x_i) = \frac{1}{\sum_k v_k} \sum_{k=1}^{C_{\text{signals}}} v_k \cdot p_k(x_i)$$

$$\Rightarrow \text{ In our dataset, } p_{\text{ref}}(\cdot) = p_S(\cdot)$$

$$t_{\mu} = -2\ln\left(\frac{L_{\text{full}}(\mu, \hat{\widehat{\alpha}})/\mathcal{L}_{\text{ref}}}{L_{\text{full}}(\hat{\mu}, \hat{\alpha})/\mathcal{L}_{\text{ref}}}\right)$$

Choice of $p_{ref}(\cdot)$ can be made purely on numerical stability of training, as it drops out from the likelihood ratio

Reweighting: Calculate weights w_i for events x_i in green sample to match blue sample

$$w_i = r_j(x_i) = \frac{p_j(x_i)}{p_{ref}(x_i)}$$

Already estimated using an ensemble of networks

Validate quality of LR estimation with re-weighting task

Open problems to extend to full ATLAS analysis: ✓ Robustness: Design and validation

 Systematic Uncertainties: Incorporate them into likelihood (ratio) model • Neyman Construction: Sampling pseudo-experiments in a per-event analysis

Systematic uncertainties

Image: arXiv:2105.08742

Systematic uncertainties

• We only have simulations at 3 variations of each nuisance parameter α_k

Known interpolation strategies

See formula used

⇒ Combine these traditional interpolation with neural network estimation of per-event likelihood ratios

 $\frac{p(x_i \mid \mu, \underline{\alpha})}{p_{ref}(x_i)} =$

<u>See</u> details of vertical interpolation for $G_j(\alpha_k), g_j(x_i, \alpha_k)$

 $\frac{p(x_i \mid \mu, \underline{\alpha})}{p_{ref}(x_i)} = \frac{1}{\nu(\mu, \alpha)} \sum_{i=1}^{C} f_j(\mu) \cdot \nu_j \cdot \frac{p_j(x_i)}{p_{ref}(x_i)} \cdot \prod_{k=1}^{N_{syst}} G_j(\alpha_k) \cdot g_j(x_i, \alpha_k)$

<u>See</u> details of vertical interpolation for $G_j(\alpha_k), g_j(x_i, \alpha_k)$

 $\frac{p(x_i \mid \mu, \underline{\alpha})}{p_{ref}(x_i)} = \frac{1}{\nu(\mu, \alpha)} \sum_{j=1}^{C} f_j(\mu) \cdot \nu_j \cdot \frac{p_j(x_i)}{p_{ref}(x_i)} \cdot \prod_{k=1}^{N_{syst}} G_j(\alpha_k) \cdot g_j(x_i, \alpha_k)$

<u>See</u> details of vertical interpolation for $G_j(\alpha_k), g_j(x_i, \alpha_k)$

N_{syst} $\sum_{j} f_j(\mu) \cdot \nu_j \cdot \frac{p_j(x_i)}{1-2}$ $\cdot \frac{f}{p_{ref}(x_i)} \cdot \prod_{i} G_j(\alpha_k) \cdot g_j(x_i, \alpha_k)$ $p(x_i | \mu, \underline{\alpha})$ $p_{ref}(x_i)$ $(\nu(\mu, \alpha))$ We have this already $g_j(x_i, \alpha_k) = \frac{p_j(x_i, \alpha_k)}{p_i(x_i)}$ α_2 α_1

Estimate from simulations and existing interpolation methods

<u>See</u> details of vertical interpolation for $G_i(\alpha_k), g_i(x_i, \alpha_k)$

 $\sum_{j} f_j(\mu) \cdot \nu_j \cdot \frac{p_j(x_i)}{p_{ref}(x_i)} \prod_{l} G_j(\alpha_k) (g_j(x_i, \alpha_k))$ $p(x_i | \mu, \underline{\alpha})$ $p_{ref}(x_i)$ $(\nu(\mu, \alpha))$ We have this already Estimated using another ensemble of networks and interpolation methods $g_j(x_i, \alpha_k) = \frac{p_j(x_i, \alpha_k)}{p_j(x_i)}$ α_2 α_1

Estimate from simulations and existing interpolation methods

<u>See</u> details of vertical interpolation for $G_i(\alpha_k), g_i(x_i, \alpha_k)$

$\frac{L_{\text{full}}(\mu, \alpha | \mathcal{D})}{L_{\text{ref}}(\mathcal{D})} = \text{Pois}(N_{\text{data}} | \nu(\mu, \alpha))$

$$\prod_{i}^{N_{\text{data}}} \frac{p(x_i | \mu, \alpha)}{p_{\text{ref}}(x_i)} \prod_{k} \text{Gaus}(a_k | \alpha_k, \delta_k)$$

 $\frac{L_{\text{full}}(\mu, \alpha | \mathcal{D})}{L_{\text{ref}}(\mathcal{D})} = \text{Pois}(N_{\text{data}} | \nu(\mu, \alpha)) \prod_{i=1}^{N_{\text{data}}} R_{\text{ate term}}$

 $\frac{L_{\text{full}}(\mu, \alpha | \mathcal{D})}{L_{\text{ref}}(\mathcal{D})} = \frac{\text{Pois}(N_{\text{data}} | \nu(\mu, \alpha))}{\text{Rate term}}$

Profiling:

This is why we define p_{ref}

$$t_{\mu} = -2\ln\left(\frac{L_{\text{full}}(\mu, \hat{\alpha})/\mathcal{L}_{\text{ref}}}{L_{\text{full}}(\hat{\mu}, \hat{\alpha})/\mathcal{L}_{\text{ref}}}\right)$$

$$p_{ref}$$
 to be independent of μ

Negative Likelihood Ratio result

Negative Likelihood Ratio result

Non-parabolic shape due to non-linear effects from quantum interference

Open problems to extend to full ATLAS analysis:

- ✓ Robustness: Design and validation
- ✓ Systematic Uncertainties: Incorporate them into likelihood (ratio) model

Neyman Construction: Sampling pseudo-experiments in a per-event analysis

Sampling (per-event) pseudo-experiments using bootstrapping

Traditionally:

NSBI:

$$w_i^{toy} = Poisson(w_i^{Asimov})$$

('Unweighted' events, i.e. integer weights)

Neyman Construction

- For each hypothesis:
 - Generate pseudo-experiments using bootstrapping
 - Compute the test statistic at the value of the considered hypothesis

• Integrate up to 68.27% (95.45%) to determine $1\sigma(2\sigma)$ CI as a function of the parameter of interest

Confidence belts

Why does NSBI work better than traditional analyses?

Why does it work better than traditional analyses?

Big picture of the implementation of NSBI for Parameter Estimation in ATLAS

O(16) observables

Big picture of the implementation of NSBI for Parameter Estimation in ATLAS

Big picture of the implementation of NSBI for Parameter Estimation in ATLAS

- + Train $O(10^3)$ networks on TensorFlow
- + Computing resources provided by Google, SMU, other HPC clusters
- ✦ Fits with JAX

- Developed a complete statistical framework for high-dimensional statistical inference
 - Builds upon traditional methodology in ATLAS
 - Developed diagnostic tools for validation
- Such methods are crucial for analyses where kinematic distributions \bullet change non-linearly with the parameter of interest, eg. EFT studies
- Weaknesses: Same as traditional analyses, requires well trained networks

- Developed a complete statistical framework for high-dimensional statistical inference
 - Builds upon traditional methodology in ATLAS
 - Developed diagnostic tools for validation
- Such methods are crucial for analyses where kinematic distributions change non-linearly with the parameter of interest, eg. EFT studies
- Weaknesses: Same as traditional analyses, requires well trained networks

Thanks!

Backup

Building a 'Search-Oriented Mixture Model'

 $p(x_i|\mu) = \frac{1}{\nu(\mu)} \sum_{i}^{C} f_j(\mu) \cdot \nu_j p_j(x_i)$ Event rates

Comes from theory model chosen to interpret data

$$p_{\text{ref}}(x_i) = \frac{1}{\sum_k v_k} \sum_{k=1}^{C_{\text{signals}}} v_k \cdot p_k(x_i)$$
Defin

 x_i is one individual event

j runs over different physics process (Eg. $gg \rightarrow H^* \rightarrow 4l, gg \rightarrow ZZ \rightarrow 4l$)

ne a 'reference' density with support over entire region of analysis Does not have to be physical !

Choice of observable

Choice of observable

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D} \,|\, \mu)$

Choice of observable

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $p(\mathcal{D} \mid \mu)$ $p(\mathcal{D} \mid \mu_0)$ $\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D} \,|\, \mu)$

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

A neural network classifier trained on S vs B, estimates the decision function*:

* Equal class weights

Choice of observable

 $\mathscr{L}(\mu \mid \mathscr{D}) = p(\mathscr{D} \mid \mu)$

 $s(x_i) = \frac{p(x_i \mid S)}{p(x_i \mid S) + p(x_i \mid B)}$

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic $p(\mathcal{D} \mid \mu)$ We want to compare likelihoods: $p(\mathcal{D} \mid \mu_0)$

 $s(x_i) = \frac{p(x_i \mid S)}{p(x_i \mid S) + p(x_i \mid B)}$ A neural network classifier trained on S vs B, estimates the decision function*:

Which contains all the information required for the likelihood ratio:

$$\frac{p(x_i \mid \mu)}{p(x_i \mid \mu = 0)} = \frac{\mu \cdot \sigma_S \cdot p(x_i \mid S) + \sigma_B \cdot p(x_i \mid B)}{\sigma_B \cdot p(x_i \mid B)} = \mu \cdot \frac{\sigma_S}{\sigma_B} \cdot \frac{s(x_i)}{1 - s(x_i)} + 1.$$

Same observable s is optimal to test all μ hypotheses! No need to develop separate analysis per hypothesis μ

* Equal class weights

Choice of observable

$$\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D})$$

Estimating high-dimensional density ratios

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $\frac{p(\mathcal{D} \mid \mu)}{p(\mathcal{D} \mid ref)}$

A neural network classifier trained on simulated samples from θ_1 vs simulated samples from *ref*, estimates the decision function:

Which contains all the information required for the likelihood ratio:

p(]

* Optimal statistic to test each value of μ * We get the LR *per event (*unbinned)

 $\mathscr{L}(\mu \,|\, \mathscr{D}) = p(\mathscr{D} \,|\, \mu)$

 $s(x_i) = \frac{p(x_i | \mu_1)}{p(x_i | \mu_1) + p(x_i | ref)}$

$$\frac{(x_i | \mu_1)}{x_i | ref} = \frac{s(x_i)}{1 - s(x_i)}$$

Calibration Curves

P_{SBI} $P_{SBI} + P_{ref}$

Ensemble prediction

 P_{B} $P_B + P_{ref}$

Interpretability: Which phase space favours one hypothesis over another?

$$-2 \cdot log \frac{P(x_i | \mu = 0.5)}{P(x_i | \mu = 1)}$$

$$-2 \cdot log \frac{P(x_i | \mu = 1.5)}{P(x_i | \mu = 1)}$$

Negative Weighted Events

- 1. Start from a positive weighted reference sample instead
- 2. Re-weight to intended parameter point
- 3. Throw toys from this sample

$$w_i^{\text{rwt-ref}} \rightarrow w_i^{\text{Asimov}}(\mu) = -$$

$$\frac{\nu(\mu)}{\nu_{\text{rwt-ref}}} \cdot \frac{p(x_i | \mu)}{P_{\text{rwt-ref}}(x_i)} \cdot w_i^{\text{rwt-ref}}$$

Estimating the variance on mean: Bootstrapping

Image: <u>Source</u>

the mean

$$w_i \rightarrow w_i \cdot Pois(1)$$

- Train an ensemble of networks, each on a Poisson fluctuated version of the training dataset
- Ensemble average used as final prediction, estimate the variance on \bullet mean from bootstrapped ensembles

Quantifying uncertainty on estimated density ratio

$$w_i \rightarrow w_i \cdot Pois(1)$$

- Train an ensemble of networks, each on a Poisson fluctuated version of the training dataset
- Ensemble average used as final prediction, estimate the variance on lacksquaremean from bootstrapped ensembles

Quantifying uncertainty on estimated density ratio

INPU Neural Network #2 Neural Network #3 Neural Network #1 Ensemble OUTPUT

$$w_i \rightarrow w_i \cdot Pois(1)$$

- Train an ensemble of networks, each on a Poisson fluct the training dataset
- Ensemble average used as final prediction, estimate the variance on mean from bootstrapped ensembles

$$w_i \rightarrow w_i \cdot Pois(1)$$

- Train an ensemble of networks, each on a Poisson fluct the training dataset
- Ensemble average used as final prediction, estimate the variance on mean from bootstrapped ensembles
- Propagate with spurious signal method

 $f_j(\mu) \to f_j(\mu + \alpha \cdot \Delta \hat{\mu}(\mu))$

Constraint term: Gauss(0,1)

Simulated Samples

- Pol: Signal strength μ
- Simplified, unphysical dataset:
 - Processes: S: $gg \rightarrow H^* \rightarrow 4l$ & B: $gg \rightarrow ZZ \rightarrow 4l$, SBI: full process
 - No VBF processes or qqZZ background
 - Two systematics: ggF NLO K-factor uncertainty (shape + norm) & luminosity uncertainty (norm only)

Input variables

Variable	Definition
Production	Kinematics
$m_{4\ell}$	Four-lepton invariant mass
$p_T^{4\ell}$	Four-lepton transverse momentur
$\eta^{4\ell}$	Four-lepton pseudo-rapidity
Decay Kinematics	
m_{Z1}	Z_1 mass
m_{Z2}	Z_2 mass
$\cos heta^*$	Higgs decay angle
$\cos \theta_1$	Z_1 decay angle
$\cos \theta_2$	Z_2 decay angle
ϕ	Angle between Z_1, Z_2 decay plane
ϕ_1	Z_1 decay plane angle

Combination with histogram analyses

 $\frac{L_{\text{comb}}(\mu, \alpha)}{L_{\text{ref}}} = \frac{L_{\text{full}}(\mu, \alpha)}{L_{\text{ref}}} L_{\text{hist}}(\mu, \alpha)$

41

Calculating pulls and impacts in JAX

Hessian:

$$C_{nm} = \left[\frac{1}{2} \frac{\partial^2 \lambda}{\partial \alpha_n \partial \alpha_m}(\hat{\mu}, \hat{\alpha})\right]^{-2}$$

Pulls:

 $\frac{\widehat{\alpha}_k - \alpha_k^0}{\sqrt{C_{kk}}}.$

Post-fit Impact:

$$\Gamma_{k} = \frac{\partial \widehat{\mu}}{\partial \alpha_{k}} \times \sqrt{C_{kk}}$$
$$= -\left[\frac{\partial^{2} \lambda}{\partial^{2} \mu}(\widehat{\mu}, \widehat{\alpha})\right]^{-1} \frac{\partial^{2} \lambda}{\partial \mu \partial \alpha_{k}}(\widehat{\mu}, \widehat{\alpha}) \times \sqrt{C_{kk}},$$

$$\lambda(\mu, \alpha) = -2 \ln(L_{full}(\mu, \alpha)/L)$$

$$G_{j}(\alpha_{k}) = \begin{cases} \left(\frac{\nu_{j}(\alpha_{k}^{+})}{\nu_{j}(\alpha_{k}^{0})}\right)^{\alpha_{k}} & \alpha_{k} > 1\\ 1 + \sum_{n=1}^{6} c_{n}\alpha_{k}^{n} & -1 \le \alpha_{k} \le 1\\ \left(\frac{\nu_{j}(\alpha_{k}^{-})}{\nu_{j}(\alpha_{k}^{0})}\right)^{-\alpha_{k}} & \alpha_{k} < -1 \end{cases}$$

With some continuity requirements

Vertical interpolation

$$g_j(x_i, \alpha_k) = \begin{cases} \left(g_j(x_i, \alpha_k^+)\right)^{\alpha_k} & \alpha_k > 1\\ 1 + \sum_{n=1}^6 c_n \alpha_k^n & -1 \le \alpha_k \le 0\\ \left(g_j(x_i, \alpha_k^-)\right)^{-\alpha_k} & \alpha_k < -1 \end{cases}$$

