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Run 2 analysis of the off-shell Higgs boson decaying into four leptons

1 analysis, 2 papers:

• A Physics measurement paper:  
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/ 
 

• An ML-focused methodology paper (this talk):  
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/ 
 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/
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The motivation for Neural Simulation-Based Inference (NSBI)
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Typical LHC Workflow

• Detector has O(100 million) sensors 
• Can’t build 100M dimensional histogram 

‣ Reconstruction pipeline, event selection 
‣ Design sensitive one-dimensional observable 
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Density Estimation: What we’re used to doing..
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With histograms we can ask “Given the data, what is the likelihood of  hypothesis vs  hypothesis?”μ = 1 μ = 2

Measure signal strength μ



5

Density Estimation: What we’re used to doing..

O

C
ou

nt

Background-only model

Signal model

Theory Predictions

O

C
ou

nt

Data

With histograms we can ask “Given the data, what is the likelihood of  hypothesis vs  hypothesis?”μ = 1 μ = 2

Measure signal strength μ



6

New challenge: Non-linear changes in kinematics (w.r.t. parameter of interest)
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Signal model

A histogram of any single observable is no longer optimal (see Ghosh et al: hal-02971995(p172)), but neural networks estimate 
high-dimensional likelihood ratios (see Cranmer et al: arXiv:1506.02169) !

Campbell et al: arXiv:1311.3589

https://hal.science/hal-02971995v3/
https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1311.3589
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New challenge: Non-linear changes in kinematics (w.r.t. parameter of interest)
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A histogram of any single observable is no longer optimal (see Ghosh et al: hal-02971995(p172)), but neural networks estimate 
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2.3. OFF-SHELL HIGGS MEASUREMENT IN THE FOUR LEPTON FINAL STATE

FIG. 5: Overall picture at 13 TeV, (colour online).

FIG. 6: Higgs related contributions in the high m4� region, (colour online).
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(a)

Figure 2.9 – Di�erential cross sections as a function of the invariant mass of the four leptons for
various processes in the four lepton channel, gg æ H

ú
æ ZZ signal (red line), gg æ ZZ background

(blue line), full process gg æ
!
H

ú
æ

"
ZZ (pink line), and the dominant background qq̄ æ ZZ. [29]

processes do so through their low-mass o�-shell tails (see the Feynman diagrams for the main
contributors to the ZZ production in Figure 2.8). Near twice the Z mass, o�-shell production of
the SM Higgs boson has a substantial cross-section at the LHC [31, 32] (see Figure 2.9) because
although the Higgs boson is o�-shell, the intermediate Z bosons in the decay process can go
on-shell. The threshold e�ect can be seen again near twice the top mass, corresponding to the
top quarks in the production process going on-shell. This provides a unique opportunity to
study the Higgs boson at higher energy scales. The destructive interference between certain SM
signal and background processes further enhance the possibility to measure the presence of the
signal.

The high mass o�-shell study has received considerable attention because it is sensitive to various
kinds of New Physics that might change the couplings of the Higgs to other fundamental particles
in the high-mass region or change the ZZ background yield [33–35], and the measurement has
interesting interpretations in the EFT framework [36]. Non-SM operators studied by [37] lead to
enhanced yields in the o�-shell regime coming from gg æ X æ ZZ

ú
æ 4¸ where X indicates New

Physics. The measurements can also help break degeneracies and compliment ttH measurements
to constrain EFT parameters [38].

It is clear that at such high energies, the infinite top mass approximation often used to simplify
the coupling of the Higgs to gluons breaks down, therefore it is essential to take finite top mass
e�ects into account. New Physics could change the couplings to the top as well as introduce
new heavy coloured states running in the loop and these e�ects might remain invisible for the
on-shell Higgs [39]. The presence of any additional agent of symmetry breaking (such as a heavy
neutral Higgs) is likely to a�ect this region of the distribution that is sensitive to interference
e�ects. Finally, the o�-shell measurement would help probe the total width of the Higgs boson,
and the interest for doing so have been described in the previous section.
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Figure 1: Leading order Feynman diagrams for the gluon-fusion 66 ! // ! 4✓ processes. The diagrams define the
effective couplings ^ 5 and ^+ used to define the off-shell Higgs boson production signal strengths.

In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
5 ^

2
+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82

^
2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84
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Figure 2: Leading order Feynman diagrams for the electroweak @@̄ ! // + 2 9 ! 4✓ + 2 9 processes. The diagrams
define the effective couplings ^+ used to define the off-shell Higgs boson production signal strengths.

The scaling uniquely defines each component in the ggF and EW production of off-shell Higgs bosons. The85

model used to measure the off-shell Higgs boson produced is then defined as a function of two parameters86

of interest:87

`
ggF
off-shell = ^

2
5 ,off-shell^

2
+ ,off-shell, `

EW
off-shell = ^

4
+ ,off-shell. (1)

where the subscript off-shell indicates that the modifier only affects processes with <� away from the pole88

mass. These signal strengths are used to defined a per-event probability model which is used to interpret89

the collected data. The model is written as:90
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Campbell et al: arXiv:1311.3589

https://hal.science/hal-02971995v3/
https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1311.3589
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The normalisations of the ,/ , / + jets and non-resonant-✓✓ backgrounds are also obtained from
the simultaneous fit, using the dedicated control regions described in Section 6. Similarly to the
@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
additional free parameters, `3✓ , `1 9

3✓ , `
2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model

specifically for the 2✓2a channel and for its combination with the 4✓ channel.

The likelihood function for the combination of both channels is built as a product of the likelihoods of
the individual channels. Theoretical and experimental uncertainties with common sources are treated
as correlated between the two channels. The NLO EW uncertainty is uncorrelated between the two
channels, due to the different schemes used to derive the uncertainties. The hypothesis of systematic
uncertainty correlation between the 4✓ and 2✓2a channels is tested for the dominant sources of uncertainties,
including the PS uncertainties that use models with different complexity in the two channels, and the NLO
EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Cranmer et al: arXiv:1506.02169
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Open problems to extend to full ATLAS analysis:
• Robustness: Design and validation 
• Systematic Uncertainties: Incorporate them into likelihood (ratio) model 
• Neyman Construction: Sampling pseudo-experiments in a per-event analysis
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 runs over different physics process 
(Eg. , )
j

gg → H* → 4l gg → ZZ → 4l

General Formula

Example use case

ATLAS DRAFT

observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.

17th October 2024 – 20:05 6
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225

?(G |`)

?S(G)
=

1
a(`)


(` �

p
`) a( +

p
` aSBI1

?SBI1 (G)

?S(G)
+ (1 �

p
`)aB

?B(G)

?S(G)

�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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the following formalism. This paper defines a search-oriented mixture model, which is the probability185
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164
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task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175
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rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185
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?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1
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9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186
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=

1
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expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
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a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1
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9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186
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expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188
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1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158
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When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166
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be expected to remain well-behaved, although this must be explicitly verified.172
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rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175
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where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180
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5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225

?(G |`)

?S(G)
=

1
a(`)


(` �

p
`) a( +

p
` aSBI1

?SBI1 (G)

?S(G)
+ (1 �

p
`)aB

?B(G)

?S(G)

�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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?S(G)
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1
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
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+ (1 �

p
`)aB
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�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230

19th September 2024 – 19:45 7

ATLAS DRAFT

space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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Figure 1: Leading order Feynman diagrams for the gluon-fusion 66 ! // ! 4✓ processes. The diagrams define the
effective couplings ^ 5 and ^+ used to define the off-shell Higgs boson production signal strengths.

In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
5 ^

2
+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82

^
2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84
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define the effective couplings ^+ used to define the off-shell Higgs boson production signal strengths.

The scaling uniquely defines each component in the ggF and EW production of off-shell Higgs bosons. The85

model used to measure the off-shell Higgs boson produced is then defined as a function of two parameters86

of interest:87
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EW
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where the subscript off-shell indicates that the modifier only affects processes with <� away from the pole88

mass. These signal strengths are used to defined a per-event probability model which is used to interpret89

the collected data. The model is written as:90
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
5 ^

2
+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82

^
2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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Figure 1: Leading order Feynman diagrams for the gluon-fusion 66 ! // ! 4✓ processes. The diagrams define the
effective couplings ^ 5 and ^+ used to define the off-shell Higgs boson production signal strengths.

In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
5 ^

2
+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82

^
2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84

�
⇤

@

^+ ^+

/

@

/

(a)

�
⇤

@

^+
/

^+

@

/

(b)

�
⇤

@

@

/

/

^+

/

^+

(c)

@
/

@

/

(d)

Figure 2: Leading order Feynman diagrams for the electroweak @@̄ ! // + 2 9 ! 4✓ + 2 9 processes. The diagrams
define the effective couplings ^+ used to define the off-shell Higgs boson production signal strengths.

The scaling uniquely defines each component in the ggF and EW production of off-shell Higgs bosons. The85

model used to measure the off-shell Higgs boson produced is then defined as a function of two parameters86

of interest:87

`
ggF
off-shell = ^

2
5 ,off-shell^

2
+ ,off-shell, `

EW
off-shell = ^

4
+ ,off-shell. (1)

where the subscript off-shell indicates that the modifier only affects processes with <� away from the pole88
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the collected data. The model is written as:90
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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of the task into individual physics processes can always be made, if the dependence on the parameter of160

interest is not analytically known, a parameterised network can be trained instead to estimate ? 9 (G8 |\) [4].161

This paper defines a search-oriented mixture model, which is the probability density ratio between a162

hypothesis and a reference,163

?(G8 |\)

?ref(G8)
=

1
a(\)

⇠’
9

5 9 (\) · a 9 ·
? 9 (G8)

?ref(G8)
, (7)

expressed using only a finite number of \-independent density ratios, ? 9 (G8)/?ref(G8). While there is a164

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,165

?ref(G8) =
1Õ
: a:

⇠signals’
:

a: · ?: (G8), (8)

with ⇠signals as the number of signal processes. This definition ensures that the denominators in Eq. 7 have166

support over the entire signal region of an analysis.167

The ? 9 (G8)/?ref(G8) terms are then estimated using classifiers. Here, ?ref is defined to be independent168

of \ which allows the final profile likelihood ratio constructed with this method to be independent of169

?ref (discussed in Section 5). ?ref contributes only as a constant offset towards log ?(G8 |\), which can170

be ignored in the maximisation of the (log-)likelihood. The search-oriented mixture model overcomes171

issues of numerical instability that may arise in alternate mixture model formulations. Additionally, the172

pre-selected region for the analysis must be defined to ensure ?ref(G8) > 0 throught the region. This173

definition of ?ref ensures that no signal-sensitive parts of the phase space need to removed.Further, this174

choice of ?ref also aids in the sample-efficient training of the individual classifiers. Finally, it may be175

convenient to define the reference density such that it can be represented using simulated samples with176

only positive weighted events. This simplifies the procedure to construct confidence intervals, which will177

be described in Section 6.178

2.3 Robust Estimators with Ensembling179

In a traditional analysis where a classifier is employed solely for constructing a sensitive observable, while180

density estimation is performed with a histogram, an imperfect training leads to a suboptimal observable181

and a slightly less sensitive analysis. However, it does not lead to an ill-behaved test statistic, introduce182

inaccuracies in the measured confidence intervals or biases in the maximum likelihood estimate of the183

parameter of interest. This is because the likelihood of event counts per bin in a histogram can be computed184

exactly using the Poisson probability density function. In NSBI, the density ratios are instead estimated185

using networks, and therefore ensuring high quality of these estimates is imperative. Since an individual186

classifier may not perfectly estimate the decision function B(G8), a series of steps is described to ensure187

that the estimator B̂(G8) is well-behaved (as determined by the diagnostic tests described in Sec. 4). One188

possibility is to calibrate B̂(G8) using simulated samples [4]; however, achieving accurate and continuous189

calibration in practice can be technically challenging. Instead, an ensemble of networks may be trained on190

bootstrapped samples of the training data, and their average response used to construct a robust estimation191

of likelihood ratios. The boostrapping can be implimented using Poission purturbations to the event weights192

that correspond to statistical fluctuations [10]. This approach helps account for the variance between193

individual networks, coming from the random initialisation of weights and the statistics of the training194

samples. Examining classifier and ensemble performance across different parts of the observable phase195
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1 Introduction

t(✓) = �2 ln

 
Lfull(✓, bb↵)/���Lref

Lfull(b✓, b↵)/���Lref

!
. (1)

tµ = �2 ln

 
Lfull(µ, bb↵)/���Lref

Lfull(bµ, b↵)/���Lref

!
. (2)

Its always good to have an introduction, if only to have an example for a section. And
here is an example for a reference from the bibtex file (see [1]). Its also pretty easy to
reference figures (see Figure 1).

Figure 1: Example of how to include a figure. This works with all sorts of formats, eps,
pdf, png.

You also have the option of using colored text, for example this part in blue, this part
in red and this part in green, before going back to black.

1. Everyone loves an enumerated list.

2. If you prefer bulleted lists, see below.

Of course there are always use cases for list with enumerations, and lists with bullets
only, which is why it is useful to have examples of both.

• Everyone loves a bulleted list.

• If you prefer an enumerated list, see above.
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Figure 1: One-dimensional reweight closure diagnostic with <4✓ and a high-level observable that represents the
squared matrix-element for the 66 ! � ! // ! 4; process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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squared matrix-element for the 66 ! � ! // ! 4; process from reconstructed quantities computed using
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latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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Train independent classifier on RW vs Target, 
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See additional closure tests
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Open problems to extend to full ATLAS analysis:
✓ Robustness: Design and validation 
‣ Systematic Uncertainties: Incorporate them into likelihood (ratio) model 
• Neyman Construction: Sampling pseudo-experiments in a per-event analysis
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Systematic uncertainties

16

result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.
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Abstract: SHERPA is a general-purpose Monte Carlo event generator for the simulation of
particle collisions in high-energy collider experiments. We summarise essential
features and improvements of the SHERPA 2.2 release series, which is heavily used
for event generation in the analysis and interpretation of LHC Run 1 and Run 2
data. We highlight a decade of developments towards ever higher precision in the
simulation of particle-collision events.
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2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam
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FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

Experimental uncertainties:  
Eg. Inaccuracies in the calibration of our detector

Theory uncertainties: 
Eg. Inability to compute QFT to infinite order

https://arxiv.org/abs/2109.08159
https://arxiv.org/abs/2105.08742
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result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.
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6IPhT, CEA Saclay, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette cedex, France
7Department of Physics, University of Cincinnati, Cincinnati, OH 45219, USA

Abstract: SHERPA is a general-purpose Monte Carlo event generator for the simulation of
particle collisions in high-energy collider experiments. We summarise essential
features and improvements of the SHERPA 2.2 release series, which is heavily used
for event generation in the analysis and interpretation of LHC Run 1 and Run 2
data. We highlight a decade of developments towards ever higher precision in the
simulation of particle-collision events.
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2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam
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FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

Experimental uncertainties:  
Eg. Inaccuracies in the calibration of our detector

Theory uncertainties: 
Eg. Inability to compute QFT to infinite order

• We only have simulations at 3 variations of each nuisance parameter  αk α1

α2

https://arxiv.org/abs/2109.08159
https://arxiv.org/abs/2105.08742
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α1

α2

⇒ Combine these traditional interpolation with neural network estimation of per-event likelihood ratios

PROS: This approach avoids the kink (discontinuous first and second derivatives) at ↵ = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that ⌘(↵) � 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.
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Fig. 6: Comparison of the three interpolation options for different ⌘
±. (a) ⌘

� = 0.8, ⌘
+ = 1.2, (b) ⌘

� = 1.1,
⌘
+ = 1.5, (c) ⌘

� = 0.2, ⌘
+ = 1.8, and (d) ⌘

� = 0.95, ⌘
+ = 1.5

4.1.6 Consistent Bayesian and Frequentist modeling
The variational estimates ⌘

± and �
± typically correspond to so called “±1� variations” in the source of

the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. 17 This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
↵p (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that

17Without loss of generality, we choose to parametrize ↵p such that ↵p = 0 is the nominal value of this parameter, ↵p = ±1
are the “±1� variations”.
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Image: arXiv:1503.07622

See formula used

https://arxiv.org/abs/1503.07622
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to validate these networks, although they can be less illuminating if the systematic variation is very small397

(leading to B(G8) ⇡ 0.5).398

NSBI not only constructs a more sensitive analysis in the entire phase space of `, but also in the space of399

U [33]. As with histogram analyses, it is important to ensure that an NSBI analysis does not overconstrain a400

nuisance parameter. This might indicate that the modelling of the systematic uncertainty is oversimplified401

or the fit is exploiting aspects of the systematic uncertainty model that are not known well, for instance402

in the case of two-point theory uncertainties [34]. Such challenges are often discussed in the context of403

modelmisspecification in ML literature. An analysis of the pulls on the nuisance parameters and impacts404

(described further in Section 5.4), and the use of alternative modelling of the systematic uncertainties (such405

as splitting the nuisance parameter into independent sub-components) can reveal such issues, or the use of406

more recently developed methods to analyse the effect of systematic uncertainties [35].407

5.2 The profile log-likelihood ratio408

The full test statistic based on a profile log-likelihood ratio [36] can be constructed from Eq. 16 by409

considering all events in the observed data, adding a Poisson term corresponding to the total rate and410

Gaussian constraint factors for the nuisance parameters. If #data is the number of events in observed data411

D,412

!full(`, U |D)

!ref(D)
= Pois(#data |a(`, U))

#data÷
8

?(G8 |`, U)

?ref(G8)

÷
:

Gaus(0: |U: , X:), (17)

where the global observables 0: and X: are the values of the auxiliary measurements and their associated413

uncertainty, which are used to constraint the source of systematic uncertainty associated with the nuisance414

parameter U: . !ref(D) =
Œ

#data
8

?ref(G8).415

If the nuisance parameter is unconstrained, the corresponding constraint factor is suppressed. An important416

case of unconstrained nuisance parameters are data-driven normalisation parameters.417

The profiling step involves an unconditional and a conditional maximum likelihood estimation of Eq. 17418

(keeping the dependence on D implicit),419

(b̀,bU) = argmax
`,U

!full(`, U)

!ref
420

bbU(`) = argmax
U

!full(`, U)

!ref
.421

Note that since !ref has been defined without any dependence on ` or U, it does not affect the position422

of the maxima. The test statistic is constructed by taking the ratio of Eq. 17 at these two points. The423

dependency on !ref cancels out and the traditional profile log-likelihood ratio is recovered,424

C` = �2 ln

 
!full(`,bbU(`))
!full(b̀,bU)

!
. (18)
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t(✓) = �2 ln

 
Lfull(✓, bb↵)/���Lref

Lfull(b✓, b↵)/���Lref

!
. (1)

tµ = �2 ln

 
Lfull(µ, bb↵)/���Lref

Lfull(bµ, b↵)/���Lref

!
. (2)

Its always good to have an introduction, if only to have an example for a section. And
here is an example for a reference from the bibtex file (see [1]). Its also pretty easy to
reference figures (see Figure 1).

Figure 1: Example of how to include a figure. This works with all sorts of formats, eps,
pdf, png.

You also have the option of using colored text, for example this part in blue, this part
in red and this part in green, before going back to black.

1. Everyone loves an enumerated list.

2. If you prefer bulleted lists, see below.

Of course there are always use cases for list with enumerations, and lists with bullets
only, which is why it is useful to have examples of both.

• Everyone loves a bulleted list.

• If you prefer an enumerated list, see above.
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to validate these networks, although they can be less illuminating if the systematic variation is very small397

(leading to B(G8) ⇡ 0.5).398

NSBI not only constructs a more sensitive analysis in the entire phase space of `, but also in the space of399

U [33]. As with histogram analyses, it is important to ensure that an NSBI analysis does not overconstrain a400

nuisance parameter. This might indicate that the modelling of the systematic uncertainty is oversimplified401

or the fit is exploiting aspects of the systematic uncertainty model that are not known well, for instance402

in the case of two-point theory uncertainties [34]. Such challenges are often discussed in the context of403

modelmisspecification in ML literature. An analysis of the pulls on the nuisance parameters and impacts404

(described further in Section 5.4), and the use of alternative modelling of the systematic uncertainties (such405

as splitting the nuisance parameter into independent sub-components) can reveal such issues, or the use of406

more recently developed methods to analyse the effect of systematic uncertainties [35].407

5.2 The profile log-likelihood ratio408

The full test statistic based on a profile log-likelihood ratio [36] can be constructed from Eq. 16 by409

considering all events in the observed data, adding a Poisson term corresponding to the total rate and410

Gaussian constraint factors for the nuisance parameters. If #data is the number of events in observed data411

D,412

!full(`, U |D)

!ref(D)
= Pois(#data |a(`, U))

#data÷
8

?(G8 |`, U)

?ref(G8)

÷
:

Gaus(0: |U: , X:), (17)

where the global observables 0: and X: are the values of the auxiliary measurements and their associated413

uncertainty, which are used to constraint the source of systematic uncertainty associated with the nuisance414

parameter U: . !ref(D) =
Œ

#data
8

?ref(G8).415

If the nuisance parameter is unconstrained, the corresponding constraint factor is suppressed. An important416

case of unconstrained nuisance parameters are data-driven normalisation parameters.417

The profiling step involves an unconditional and a conditional maximum likelihood estimation of Eq. 17418

(keeping the dependence on D implicit),419

(b̀,bU) = argmax
`,U

!full(`, U)

!ref
420

bbU(`) = argmax
U

!full(`, U)

!ref
.421

Note that since !ref has been defined without any dependence on ` or U, it does not affect the position422

of the maxima. The test statistic is constructed by taking the ratio of Eq. 17 at these two points. The423

dependency on !ref cancels out and the traditional profile log-likelihood ratio is recovered,424

C` = �2 ln

 
!full(`,bbU(`))
!full(b̀,bU)

!
. (18)

17th October 2024 – 20:05 15



Negative Likelihood Ratio result

20

An additional tool to interpret the results is shown in Figure 7, where the distribution of the per-event
test statsitic, C`=`0 (G8) = �2 log(?(G8 |`0)/?(G8 | ˆ̀)), is shown as a function of signal strength <4✓ for two
different hypotheses `

0 and the maximum likelihood estimate ˆ̀ = 1. Events in regions with C`=`0 > 0
indicate a better compatibility with a ` = `

0 hypthesis over a ` = ˆ̀ hypothesis, while regions with
C`=`0 < 0 indicate less compatibility. However, these one-dimensional distributions marginalise over
the rest of the high-dimensional phase space, and compare only two hypotheses at a time. Therefore, a
single distribution is not sufficient to draw conclusions about the phase space responsible for the enhanced
sensitivity of this high-dimensional analysis.

7.2 Impact of systematic uncertainties

The systematic uncertainties considered in this demonstration are described in Section 3.3, and their impact
is taken into account following the formalism developed in Section 5. The 6 9 (G8 , U:) term in Eq. 16
accounts for the impact on the shape of the distributions and the ⌧ 9 (U:) term accounts for the impact
on the overall normalisation. The interpolation functions used are described in Appendix A. In the case
of uncertainties that affect the normalisation, but not the shape of distributions, the term 6 9 (G8 , U:) in
Eq. 16 is fixed to 1 over the full range of U: . This way, the impact of the nuisance parameter on the test
statistic pertains only to the overall yields but not to the per-event probability density ratios. The profile
(log-)likelihood is shown in Figure 8 and compared to a histogram analysis using the Ofixed observable.
The systematic uncertainties reduce the sensitivity of the measurement, as is expected.

Figure 8: The log-likelihood ratio as a function of signal strength `, representing only statistical uncertainties (solid
red for NSBI, dashed green for histogram analysis), compared to the profile log-likelihood ratio, representing both
statistical and systematic uncertainties (dotted red for NSBI, dotted green for histogram analysis), evaluated on
Asimov data generated with ` = 1. The histogram analysis is performed with a fixed observable, log ?B/?(G |` = 1).
The two nuisance parameters in this study are described in Section 3.3.

23



Negative Likelihood Ratio result

20

An additional tool to interpret the results is shown in Figure 7, where the distribution of the per-event
test statsitic, C`=`0 (G8) = �2 log(?(G8 |`0)/?(G8 | ˆ̀)), is shown as a function of signal strength <4✓ for two
different hypotheses `

0 and the maximum likelihood estimate ˆ̀ = 1. Events in regions with C`=`0 > 0
indicate a better compatibility with a ` = `

0 hypthesis over a ` = ˆ̀ hypothesis, while regions with
C`=`0 < 0 indicate less compatibility. However, these one-dimensional distributions marginalise over
the rest of the high-dimensional phase space, and compare only two hypotheses at a time. Therefore, a
single distribution is not sufficient to draw conclusions about the phase space responsible for the enhanced
sensitivity of this high-dimensional analysis.

7.2 Impact of systematic uncertainties

The systematic uncertainties considered in this demonstration are described in Section 3.3, and their impact
is taken into account following the formalism developed in Section 5. The 6 9 (G8 , U:) term in Eq. 16
accounts for the impact on the shape of the distributions and the ⌧ 9 (U:) term accounts for the impact
on the overall normalisation. The interpolation functions used are described in Appendix A. In the case
of uncertainties that affect the normalisation, but not the shape of distributions, the term 6 9 (G8 , U:) in
Eq. 16 is fixed to 1 over the full range of U: . This way, the impact of the nuisance parameter on the test
statistic pertains only to the overall yields but not to the per-event probability density ratios. The profile
(log-)likelihood is shown in Figure 8 and compared to a histogram analysis using the Ofixed observable.
The systematic uncertainties reduce the sensitivity of the measurement, as is expected.

Figure 8: The log-likelihood ratio as a function of signal strength `, representing only statistical uncertainties (solid
red for NSBI, dashed green for histogram analysis), compared to the profile log-likelihood ratio, representing both
statistical and systematic uncertainties (dotted red for NSBI, dotted green for histogram analysis), evaluated on
Asimov data generated with ` = 1. The histogram analysis is performed with a fixed observable, log ?B/?(G |` = 1).
The two nuisance parameters in this study are described in Section 3.3.

23

Non-parabolic shape due to non-linear effects from quantum interference
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Open problems to extend to full ATLAS analysis:
✓ Robustness: Design and validation 
✓ Systematic Uncertainties: Incorporate them into likelihood (ratio) model 
‣ Neyman Construction: Sampling pseudo-experiments in a per-event analysis



Sampling (per-event) pseudo-experiments using bootstrapping

22

Traditionally:

Asimov Histogram

Poisson per bin
Poisson per event

NSBI:

Ntoy
i = Poisson(NAsimov

i ) wtoy
i = Poisson(wAsimov

i )

(‘Unweighted’ events, i.e. integer weights)



Figure 4: Distribution of the test statistic for pseudo-experiments with a ` of 0 (left) and 1 (right). The 1f and 2f
confidence intervals are built using a Neyman construction by integrating up to 68.27% (yellow vertical dashed line)
and 95.45% (red vertical dashed line) of the 15,000 pseudo-experiments, respectively.

The formalism discussed in this section lends itself to further tests for robustness on toy samples generated
by shifting multiple nuisance parameters simultaneously and verifying that the confidence bands remain
well-behaved in such scenarios. Such samples can be generated by a reweighting procedure similar to the
one described in Section 6.2, this time using the probability density ratio that includes nuisance parameters
(Eq. 16),

F
rwt-ref
8

! F
Asimov
8

(`, U) =
a(`, U)

arwt-ref
·
?(G8 |`, U)

?rwt-ref(G8)
· F

rwt-ref
8

. (26)

7 Comparison of sensitivity

This section demonstrates the sensitivity of the NSBI method and the impact of systematic uncertainties
on the result. The demonstration is performed for a simplified version of an off-shell Higgs boson signal
strength measurement on simulated samples and considers a subset of the physics processes and systematic
uncertainties that are releveant to a full physics analysis.

7.1 Comparison to histogram-based methods

The NSBI method is compared to two histogram-based analysis strategies on a simulated Asimov dataset,
to demonstrate the gains coming from the parameterised and unbinned nature of the method. The first
histogram method employs a single observable, a signal vs. full process discriminant, that is commonly
used for LHC analyses with quantum interference,

Ofixed = log
?S(G8)

?SBI(G8)
. (27)

Since this ratio is already estimated with ensembles for the NSBI method, no additional networks need to
be trained. This observable is subsequently used to construct a histogram (with 15 bins), and a Poisson

20

Neyman Construction

23

True μ = 0 True μ = 1

• For each hypothesis: 
• Generate pseudo-experiments using bootstrapping 
• Compute the test statistic at the value of the considered hypothesis 
• Integrate up to 68.27% (95.45%) to determine  ( ) CI as a function of the parameter of interest1σ 2σ



Figure 5: A comparison of expected sensitivity of NSBI to a typical histogram-based analysis, not including systematic
uncertainties. The evaluation is performed on an Asimov dataset generated with ` = 1. The test statistic, the
log-likelihood ratio C`, is shown as a function of signal strength `. The 1f and 2f confidence bands in grey are
determined for NSBI using the Neyman construction procedure outlined in Section 6.

likelihood fit is performed with it, analogous to what would be done in traditional analysis. The likelihood
ratio is used as the test statistic. This serves as the baseline for comparison of sensitivities to a traditional
analysis using the same data. The improvement from NSBI can be seen in Figure 5.

To demonstrate the power of the parameterisation nature of NSBI, it is also compared to a parameterised
but binned method, which may not always be practical to use in analysis but is useful for this demonstration.
The second method uses an observable that is parameterised in `,

O` =
?(G8 |`)

?(G8 |` = 1)
, (28)

which is subsequently binned and used to perform a Poisson likelihood fit. The log-likelihood ratio is
computed for each value of ` using a histogram of the corresponding version of O`, similar to the method
described in Ref. [20]. The improvement shown in Figure 6 for O` over Ofixed illustrates the power of a
parameterised method. The traditional analysis (with the fixed observable) exhibits two prominent minima,
which is typical in analyses with non-linear effects from, for example, quantum interference. However, the
minimum at the incorrect value of ` is far less prominent for the analysis using a parameterised observable.
Since the observable is optimised for each value of the parameter of interest, the method is able to more
confidently reject the incorrect values of `. The further improvement coming from NSBI is due to the
unbinned nature of the method. As the number of bins increases, O` can approach the sensitivity of NSBI;
however, this may introduce numerical instability, requiring careful bin width optimisation, and make
sufficiently fine binning untenable across the full range of `. If the number of bins in a histogram-based
analysis is limited by statistics, then leveraging the power of unbinned fits may be desirable.
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Confidence belts
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Similar to structure seen in histogram analysis



25

Why does NSBI work better than traditional analyses?



Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic C`, as a function of `. The evaluation is performed on an Asimov dataset generated with ` = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log ?B/?(G |` = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, ?(G8 |`)/?(G8 |` = 1), for specific values of `(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio �2 log(?(G8 |`0)/?(G8 | ˆ̀)) for events in bins of <4✓ , for a hypothesis `0 = 0.5
(left) or a hypothesis `0 = 1.5 (right), with ˆ̀ = 1 as the maximum likelihood estimate on an Asimov dataset generated
at ` = 1. Events in regions with C`=`0 > 0 are collectively more consistent with a ` = `

0 hypthesis over a ` = ˆ̀
hypothesis, while regions with C`=`0 < 0 are collectively less consistent. The very high mass region (<4✓ > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.
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Why does it work better than traditional analyses?
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: Similar to histogram analysisOfixed = log
pS(xi)

pSBI(xi)

NSBI: Parameterised, unbinned



Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic C`, as a function of `. The evaluation is performed on an Asimov dataset generated with ` = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log ?B/?(G |` = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, ?(G8 |`)/?(G8 |` = 1), for specific values of `(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio �2 log(?(G8 |`0)/?(G8 | ˆ̀)) for events in bins of <4✓ , for a hypothesis `0 = 0.5
(left) or a hypothesis `0 = 1.5 (right), with ˆ̀ = 1 as the maximum likelihood estimate on an Asimov dataset generated
at ` = 1. Events in regions with C`=`0 > 0 are collectively more consistent with a ` = `

0 hypthesis over a ` = ˆ̀
hypothesis, while regions with C`=`0 < 0 are collectively less consistent. The very high mass region (<4✓ > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.

22

Why does it work better than traditional analyses?

26

: Similar to histogram analysisOfixed = log
pS(xi)

pSBI(xi)

: Parameterised observable, histogram fitOμ =
p(xi |μ)

p(xi |μ = 1)

Significant improvement in quantum interference impacted region

NSBI: Parameterised, unbinned



Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic C`, as a function of `. The evaluation is performed on an Asimov dataset generated with ` = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log ?B/?(G |` = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, ?(G8 |`)/?(G8 |` = 1), for specific values of `(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio �2 log(?(G8 |`0)/?(G8 | ˆ̀)) for events in bins of <4✓ , for a hypothesis `0 = 0.5
(left) or a hypothesis `0 = 1.5 (right), with ˆ̀ = 1 as the maximum likelihood estimate on an Asimov dataset generated
at ` = 1. Events in regions with C`=`0 > 0 are collectively more consistent with a ` = `

0 hypthesis over a ` = ˆ̀
hypothesis, while regions with C`=`0 < 0 are collectively less consistent. The very high mass region (<4✓ > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.

22

Why does it work better than traditional analyses?
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: Similar to histogram analysisOfixed = log
pS(xi)

pSBI(xi)

: Parameterised observable, histogram fitOμ =
p(xi |μ)

p(xi |μ = 1)

Significant improvement in quantum interference impacted region

 approaches NSBI as Oμ nBins → ∞

NSBI: Parameterised, unbinned
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Conclusion

• Developed a complete statistical framework for high-dimensional 

statistical inference 

• Builds upon traditional methodology in ATLAS  

• Developed diagnostic tools for validation 

• Such methods are crucial for analyses where kinematic distributions 

change non-linearly with the parameter of interest, eg. EFT studies 

• Weaknesses: Same as traditional analyses, requires well trained networks

“Neural Simulation-Based Inference”

7

Obs	Data

μ1

Likelihood	Ratio		

( ℒ(μ1 |𝒟)
ℒ(ref |𝒟) )

The neural inference framework:

Traditional framework:

Statistical	
Fit

Summary	
Histogram

μ1

Likelihood	
ℒ(μ1 |𝒟)

The normalisations of the ,/ , / + jets and non-resonant-✓✓ backgrounds are also obtained from
the simultaneous fit, using the dedicated control regions described in Section 6. Similarly to the
@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
additional free parameters, `3✓ , `1 9

3✓ , `
2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model

specifically for the 2✓2a channel and for its combination with the 4✓ channel.

The likelihood function for the combination of both channels is built as a product of the likelihoods of
the individual channels. Theoretical and experimental uncertainties with common sources are treated
as correlated between the two channels. The NLO EW uncertainty is uncorrelated between the two
channels, due to the different schemes used to derive the uncertainties. The hypothesis of systematic
uncertainty correlation between the 4✓ and 2✓2a channels is tested for the dominant sources of uncertainties,
including the PS uncertainties that use models with different complexity in the two channels, and the NLO
EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Building a ‘Search-Oriented Mixture Model’

30

 runs over different physics process 
(Eg. , )
j

gg → H* → 4l gg → ZZ → 4l

ATLAS DRAFT

of the task into individual physics processes can always be made, if the dependence on the parameter of160

interest is not analytically known, a parameterised network can be trained instead to estimate ? 9 (G8 |\) [4].161

This paper defines a search-oriented mixture model, which is the probability density ratio between a162

hypothesis and a reference,163

?(G8 |\)

?ref(G8)
=

1
a(\)

⇠’
9

5 9 (\) · a 9 ·
? 9 (G8)

?ref(G8)
, (7)

expressed using only a finite number of \-independent density ratios, ? 9 (G8)/?ref(G8). While there is a164

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,165

?ref(G8) =
1Õ
: a:

⇠signals’
:

a: · ?: (G8), (8)

with ⇠signals as the number of signal processes. This definition ensures that the denominators in Eq. 7 have166

support over the entire signal region of an analysis.167

The ? 9 (G8)/?ref(G8) terms are then estimated using classifiers. Here, ?ref is defined to be independent168

of \ which allows the final profile likelihood ratio constructed with this method to be independent of169

?ref (discussed in Section 5). ?ref contributes only as a constant offset towards log ?(G8 |\), which can170

be ignored in the maximisation of the (log-)likelihood. The search-oriented mixture model overcomes171

issues of numerical instability that may arise in alternate mixture model formulations. Additionally, the172

pre-selected region for the analysis must be defined to ensure ?ref(G8) > 0 throught the region. This173

definition of ?ref ensures that no signal-sensitive parts of the phase space need to removed.Further, this174

choice of ?ref also aids in the sample-efficient training of the individual classifiers. Finally, it may be175

convenient to define the reference density such that it can be represented using simulated samples with176

only positive weighted events. This simplifies the procedure to construct confidence intervals, which will177

be described in Section 6.178

2.3 Robust Estimators with Ensembling179

In a traditional analysis where a classifier is employed solely for constructing a sensitive observable, while180

density estimation is performed with a histogram, an imperfect training leads to a suboptimal observable181

and a slightly less sensitive analysis. However, it does not lead to an ill-behaved test statistic, introduce182

inaccuracies in the measured confidence intervals or biases in the maximum likelihood estimate of the183

parameter of interest. This is because the likelihood of event counts per bin in a histogram can be computed184

exactly using the Poisson probability density function. In NSBI, the density ratios are instead estimated185

using networks, and therefore ensuring high quality of these estimates is imperative. Since an individual186

classifier may not perfectly estimate the decision function B(G8), a series of steps is described to ensure187

that the estimator B̂(G8) is well-behaved (as determined by the diagnostic tests described in Sec. 4). One188

possibility is to calibrate B̂(G8) using simulated samples [4]; however, achieving accurate and continuous189

calibration in practice can be technically challenging. Instead, an ensemble of networks may be trained on190

bootstrapped samples of the training data, and their average response used to construct a robust estimation191

of likelihood ratios. The boostrapping can be implimented using Poission purturbations to the event weights192

that correspond to statistical fluctuations [10]. This approach helps account for the variance between193

individual networks, coming from the random initialisation of weights and the statistics of the training194

samples. Examining classifier and ensemble performance across different parts of the observable phase195

21st September 2024 – 01:19 6

Define a ‘reference’ density with support over entire region of analysis 
Does not have to be physical !

 is one individual eventxi

Event rates
Comes from theory model chosen to interpret data

ATLAS DRAFT

observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coefficients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength `), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final173

state, each with a coefficient that is some function of the parameter of interest. If the decomposition is into174

⇠ different components, representing different physics processes,175

?(G8 |`) =
1

a(`)

⇠’
9

5 9 (`) · a 9 ? 9 (G8), (8)

where ? 9 (G8) is the probability density for the event G8 correspeonding to the process 9 , and a 9 the inclusive176

rate for that process are defined with ` at the Standard Model value. The full dependence on ` can be177

captured using only the coefficients 5 9 (`) and the total rate a(`). Such a decomposition is possible for a178

wide range of LHC analyses where the coefficients 5 9 (`) are known from theory2 [4]. These coefficients are179

also used together with the inclusive rates (estimated from simulations) for each process (a 9) to determine180

a(`) =
Õ

5 9 (`) · a 9 . Here ` could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to ? 9 (G8 |`) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

?(G8 |`)

?ref(G8)
=

1
a(`)

⇠’
9

5 9 (`) · a 9

? 9 (G8)

?ref(G8)
, (9)

expressed using only a finite number of `-independent density ratios, ? 9 (G8)/?ref(G8). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

?ref(G8) =
1Õ
:
a:

⇠signals’
:

a: ?: (G8), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) =
p(xi |S)

p(xi |S) + p(xi |B)
A neural network classifier trained on S vs B, estimates the decision function*:

* Equal class weights
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) =
p(xi |S)

p(xi |S) + p(xi |B)
A neural network classifier trained on S vs B, estimates the decision function*:

p(xi |μ)
p(xi |μ = 0)

=
μ ⋅ σS ⋅ p(xi |S) + σB ⋅ p(xi |B)

σB ⋅ p(xi |B)
= μ ⋅

σS

σB
⋅

s(xi)
1 − s(xi)

+ 1.

Which contains all the information required for the likelihood ratio:

Same observable  is optimal to test all  hypotheses!
No need to develop separate analysis per hypothesis 

s μ
μ* Equal class weights
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What breaks down?

No longer in this convenient spacial case: The same observable no longer optimal due to non-linear effects coming from 
quantum interference 

Also does not generalise to an arbitrary theory parameter , (eg. Effective Field Theory parameters)θ

Can we modify the LHC analysis methodology to design near-optimal analyse for the general case?

CHAPTER 2. THEORETICAL OVERVIEW

where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
ú

æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575

|Ms(X)|2 æ |
Ô

µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579

Chapter 7.580

2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583
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Nexp = μ ⋅ S + B+ μ ⋅ I



p(xi |μ1)
p(xi |ref )

=
s(xi)

1 − s(xi)

s(xi) =
p(xi |μ1)

p(xi |μ1) + p(xi |ref )
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Estimating high-dimensional density ratios

We want to compare likelihoods: 
p(𝒟 |μ)

p(𝒟 |ref )

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

✴ Optimal statistic to test each value of 
✴ We get the LR per event (unbinned)

μ

Cranmer et al

A neural network classifier trained on simulated samples from  vs 
simulated samples from , estimates the decision function:

θ1
ref

Which contains all the information required for the likelihood ratio:

https://arxiv.org/abs/1506.02169


Re-weight closures for B

34

m4l Matrix-Element-based Observable
(ggF from MCFM)

Target
RW

Source

Figure 1: One-dimensional reweight closure diagnostic with <4✓ and a high-level observable that represents the
squared matrix-element for the 66 ! � ! // ! 4; process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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Figure 1: One-dimensional reweight closure diagnostic with <4✓ and a high-level observable that represents the
squared matrix-element for the 66 ! � ! // ! 4; process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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Calibration Curves
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Figure 2: Calibration curve comparing ensemble estimated B̂(G8) with the expected value from binned MC simulated
samples, for the validation of the ?SBI1/?ref (left) and ?B/?ref (right) probability density ratio estimations. The
absolute residuals are shown in the bottom panel.

Figure 3: The distribution of neural network output for example events (in different colours) from an ensemble of
classifiers trained to separate B from S samples, evaluated on seven example events from B (left) and seven example
events from S (right). A wider spread indicates a larger uncertainty on that event from the ensemble.

come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
? 9 (G8)/?ref(G8) that form the mixture model, the combined probability density ratio ?(G8 |`)/?ref(G8) can

13



Interpretability: 
Which phase space favours one hypothesis over another?
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−2 ⋅ log
P(xi |μ = 0.5)
P(xi |μ = 1)

−2 ⋅ log
P(xi |μ = 1.5)
P(xi |μ = 1)

Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic C`, as a function of `. The evaluation is performed on an Asimov dataset generated with ` = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log ?B/?(G |` = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, ?(G8 |`)/?(G8 |` = 1), for specific values of `(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio �2 log(?(G8 |`0)/?(G8 | ˆ̀)) for events in bins of <4✓ , for a hypothesis `0 = 0.5
(left) or a hypothesis `0 = 1.5 (right), with ˆ̀ = 1 as the maximum likelihood estimate on an Asimov dataset generated
at ` = 1. Events in regions with C`=`0 > 0 are collectively more consistent with a ` = `

0 hypthesis over a ` = ˆ̀
hypothesis, while regions with C`=`0 < 0 are collectively less consistent. The very high mass region (<4✓ > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.

22



Negative Weighted Events

37

1. Start from a positive weighted reference sample instead 

2. Re-weight to intended parameter point 

3. Throw toys from this sample

wrwt-ref
i → wAsimov

i (μ) =
ν(μ)

νrwt-ref
⋅

p(xi |μ)
Prwt-ref(xi)

⋅ wrwt-ref
i
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Population

Random Sample

Sample

Want to estimate mean of population

Re-Sample 
with 

replacement

Sample 
Mean 1

Sample 
Mean 2

Sample 
Mean 3

̂μ

Estimate variance on 
the mean

Image: Source

Estimating the variance on mean: Bootstrapping

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/bootstrapping-in-statistics/
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Quantifying uncertainty on estimated density ratio

• Train an ensemble of networks, each on a Poisson fluctuated version of 
the training dataset

• Ensemble average used as final prediction, estimate the variance on 
mean from bootstrapped ensembles Image: Source

wi → wi ⋅ Pois(1)

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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Figure 2: Calibration curve comparing ensemble estimated B̂(G8) with the expected value from binned MC simulated
samples, for the validation of the ?SBI1/?ref (left) and ?B/?ref (right) probability density ratio estimations. The
absolute residuals are shown in the bottom panel.

Figure 3: The distribution of neural network output for example events (in different colours) from an ensemble of
classifiers trained to separate B from S samples, evaluated on seven example events from B (left) and seven example
events from S (right). A wider spread indicates a larger uncertainty on that event from the ensemble.

come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
? 9 (G8)/?ref(G8) that form the mixture model, the combined probability density ratio ?(G8 |`)/?ref(G8) can

13

Distribution of NN predictions for example events

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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Quantifying uncertainty on estimated density ratio

• Train an ensemble of networks, each on a Poisson fluctuated version of 
the training dataset

• Ensemble average used as final prediction, estimate the variance on 
mean from bootstrapped ensembles Image: Source

wi → wi ⋅ Pois(1)

Figure 2: Calibration curve comparing ensemble estimated B̂(G8) with the expected value from binned MC simulated
samples, for the validation of the ?SBI1/?ref (left) and ?B/?ref (right) probability density ratio estimations. The
absolute residuals are shown in the bottom panel.

Figure 3: The distribution of neural network output for example events (in different colours) from an ensemble of
classifiers trained to separate B from S samples, evaluated on seven example events from B (left) and seven example
events from S (right). A wider spread indicates a larger uncertainty on that event from the ensemble.

come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
? 9 (G8)/?ref(G8) that form the mixture model, the combined probability density ratio ?(G8 |`)/?ref(G8) can

13

Distribution of NN predictions for example events
• Propagate with spurious signal method

Constraint term: Gauss(0,1)

fj(μ) → fj(μ + α ⋅ Δ ̂μ(μ))

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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• PoI: Signal strength  

• Simplified, unphysical dataset: 

• Processes: S:  & B: 
, SBI: full process 

• No VBF processes or qqZZ background 

• Two systematics: ggF NLO K-factor uncertainty 
(shape + norm) & luminosity uncertainty (norm only)

μ

gg → H* → 4l
gg → ZZ → 4l

Input variables

ATLAS DRAFT

3.1 Input Features231

With sufficient training statistics, deep neural networks have the capacity to be trained only on low-level232

input features such as the four-momenta of all observed final state particles. They can then automatically233

capture all higher-level correlations [11]. However, in the regime of limited simulated samples, as is often234

the case at LHC experiments, there is a benefit to using a set of physics-motivated high-level observables235

that completely describe the observed final state. This was found to enable sample-efficient training of the236

networks in this demonstration.237

The set of observables used in this demonstration to train the networks are described in Table 1. The238

decay kinematic variables are defined as the seven kinematic observables cos \⇤, cos \1, cos \2, q1, q, </1239

and </2. These have traditionally been used as inputs to construct a matrix-element-based discriminant,240

and are known to contain all relevant information to distinguish the Higgs boson signal process from the241

background [12]. Combined with the production kinematic variables <4✓ , ?4✓
) and [4✓ , these variables242

can be used to calculate the four-momenta of all final-state leptons in the // ! 4✓ decay channel [13].243

Further details about the observables and event selection can be found in Ref. [7].244

Table 1: List of input variables for the neural network. For details, refer to Ref. [7].

Variable Definition
Production Kinematics

<4✓ Four-lepton invariant mass
?

4✓
) Four-lepton transverse momentum

[
4✓ Four-lepton pseudo-rapidity

Decay Kinematics
</1 /1 mass
</2 /2 mass

cos \⇤ Higgs decay angle
cos \1 /1 decay angle
cos \2 /2 decay angle
q Angle between /1, /2 decay planes
q1 /1 decay plane angle

3.2 Network Architecture and Training245

The classifiers trained in this demonstration are all feed-forward dense networks and comprise 5 hidden246

layers with 1000 nodes each and a swish activation [14], followed by an output layer with a single node and247

sigmoid activation. The events were split into train and test sets using the :-fold method with : = 10, and a248

bootstrapped sample was generated from the training set to train each network in an ensemble. A weighted249

binary cross-entropy loss function that accounts for event weights is used to train the networks with the250

Nadam optimizer [15] in TensorFlow [16]. The training required large scale GPU infrastructure [17],251

consisting of several hundred Nvidia T4 and Nvidia A100 GPUs.252
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Further, the use of likelihood ratios instead of likelihoods does not prevent the combination of NSBI and425

histogram-based analyses. The combination can be written as426

!comb(`, U)

!ref
=

!full(`, U)

!ref
!hist(`, U). (19)

The test statistic is again independent of !ref, which appears as a constant offset in the log-likelihood.427

5.3 Effects from finite Monte Carlo samples428

When likelihood ratios are estimated with neural networks, an uncertainty may be introduced to account429

not only for the limited number of simulated training samples, but also the stochastic nature of the training430

algorithm. Training ensembles on bootstrapped versions of the training data, as described in Section 2.3431

provides a natural way to describe both of these effects.432

Since the estimator for the density ratio is computed as the mean4 prediction from an ensemble of433

networks, the variance of that mean can be estimated using the bootstrapping technique. The mean of each434

bootstrapped ensemble is used to estimate a best fit value of the parameter of interest ˆ̀, and the standard435

deviation of these estimates determines the variation of the mean � ˆ̀ due the finite number of events in the436

training sample. The variance can be determined at different values of ` using different Asimov datasets.5437

Such datasets at any value of the parameter of interest can often be constructed from a set of simulations at438

few basis points in this parameter, using various morphing techniques [8, 37]. The estimated � ˆ̀ is an439

uncertainty on the modelling of the expected probability density of the physics processes and therefore440

it can be introduced as a systematic uncertainty following the spurious signal approach [38] frequently441

employed in unbinned LHC analyses. The nuisance parameter Ustat with a Gaus(0, 1) constraint term is442

introduced to Eq. 16 with the modification443

5 9 (`) ! 5 9 (` + Ustat · � ˆ̀(`)). (20)

5.4 Calculation of pulls and impacts444

While the unbinned nature of NSBI poses computational challenges to traditional statistical tools for445

evaluating and analysing the profile likelihood ratio, this framework enables the direct application of446

modern computational tools that simplify calculations. The full likelihood ratio (Eq. 17) and the test447

statistic (Eq. 18) are differentiable functions. Their dependence on the parameters of interest ` and nuisance448

parameters U is introduced through differentiable functions, and the probability density ratios are built449

from neural networks which are themselves differentiable. It is natural to leverage auto-differentiation450

techniques [39] to perform the profiling and to calculate the Hessian matrix of !full(`, U).451

The estimation of pulls and impacts relies on the calculation of the covariance matrix (we identify the452

parameter of interest with index 0 to simplify the notation),453

4 The median, known to be unbiased and robust to outliers, could also be used.
5 An Asimov dataset is one for which the application of any unbiased estimator for all parameters will provide the true values [36].

In practice, an approximation of such a dataset can be constructed using a sufficiently large number of simulated samples with
appropriate event weights.
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Hessian:
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⇠=< =

1
2

m
2
_

mU=mU<
(b̀,bU)

��1

, (25)

based on inverse of the Hessian matrix at the maximum likelihood estimate (b̀,bU), and where _(`, U) =357

�2 ln(!full(`, U)/!ref). The calculation of the Hessian matrix can be parallelised on computing clusters [18].358

The pull of the NP U is calculated as,359

bU: � U
0
:

p
⇠::

. (26)

This is the definition often adopted in histogram-based analysis with the MINOS procedure [27], which360

defines pulls based on approximate profile likelihood ratio confidence intervals, with the exact computation361

reserved only for pathological cases.362

The impact of a nuisance parameter on a measurement is traditionally computed by re-running the entire363

likelihood minimisation after fixing the nuisance parameter at a few values. This calculation is more364

expensive since it requires multiple minimisations of log-likelihood ratio. Here, the maximum likelihood365

estimate of ` is re-computed for different fixed value of U: to estimate �: = b̀(bU: ±
p
⇠::) � b̀(bU:). With366

auto-differentiation, a local estimate of the post-fit impact can be estimated as,367

�: =
m b̀
mU:

⇥

p
⇠::

= �


m

2
_

m
2
`

(b̀,bU)
��1

m
2
_

m`mU:
(b̀,bU) ⇥ p

⇠:: ,

(27)

considerably simplifying the analysis of the profile likelihood ratio, and reserving the finite-difference368

estimate to pathological cases. A similar definition has been proposed for a consistent separation between369

statistical and systematic uncertainty in Ref. [28]. The local definition also avoids ambiguities that exist in370

models with multiple local minima. The pre-fit impact can be calculated by replacing (b̀,bU 9) ! (`0, U
0
9 )371

and
p
⇠:: ! XU: . Further details about the these calculations for NSBI using auto-differentiation372

techniques are described in Ref. [18].373

6 Neyman Construction374

In frequentist statistics, a confidence interval derived from a measurement is expected to cover the true value375

with a specified probability (e.g., 68% or 95% of the time). The procedure for building such confidence376

intervals, referred to as the Neyman construction, involves the inversion of the hypothesis tests with the377

help of a large number of pseudo-experiments generated based on simulated samples [29]. This step is378

crucial when the test statistic cannot be assumed to follow a chi-squared distribution, such as when the379

analysis has few pre-selected data events (eg. low-background searches) and non-linear problems (eg. due380

to quantum-interference effects) [25]. In the case of NSBI, any residual bias in the estimated probability381

density ratios may produce a test statistic that does not follow a chi-squared distribution, making this382

procedure all the more curial.383
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With some continuity requirements 
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Appendix684

A Interpolation Function685

Section 5 discusses the use of interpolation methods for systematic uncertainties. A common choice for the686

interpolation function to parameterise the impact of nuisance parameters at the LHC is [2]687

⌧ 9 (U:) =

8>>>>>><
>>>>>>:

✓
a 9 (U

+

: )

a 9 (U
0
: )

◆
U:

U: > 1

1 +
Õ6

==1 2=U
=

:
�1  U:  1✓

a 9 (U
�

: )

a 9 (U
0
: )

◆�U:

U: < �1

, (29)

where the six coefficients 2= of the polynomial in U: are determined uniquely from the requirements688

that ⌧ 9 (U:) be continuous and its first and second derivatives be continuous at U: = ±1. The same689

interpolation strategy and continuity requirements can be used to interpolate 6 9 (G8 , U:),690
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