Jet energy scale and resolution of jets with ParticleNet  $p_{\rm T}$  regression using data collected by the CMS experiment for partial Run 3

#### Matteo Malucchi

on behalf of the CMS collaboration

**ETH** zürich

ML4Jets

07/11/2024



# Jet $p_{\rm T}$ Regression in CMS

**ETH** zürich



**Jet**  $\mathbf{p}_{\mathrm{T}}$  **regression** aims at estimating the truth-level jet  $p_{\mathrm{T}}$  while at the same time improving the  $p_{\mathrm{T}}$  resolution



DNN-based b-jet energy regression used in multiple H→bb analyses in Run 2 (e.g. HH4b Phys. Rev. Lett. 129, 081802, VHbb Phys. Rev. D 109, 092011)

Phys. Rev. D 101, 056019

**ParticleNet** (**PNet**), a Graph Neural Network that performs jet-tagging and flavour aware jet  $p_{\rm T}$  regression and jet energy resolution estimation

arXiv:2202.03772

**UParT**, a Particle Transformer model performing similar tasks to PNet (see <u>Uttiva's talk</u> for more details)



### Jet Reconstruction in CMS





#### <u> IINST 12 P10003</u>

- The following results are shown for jets composed of **Particle Flow** (PF) candidates reconstructed by combining various sub-detectors information
- The jets are clustered using the **anti**- $k_{\rm T}$  algorithm with R = 0.4



#### <u>JINST 15 P09018</u>

- The **Pileup Per Particle Identification** (PUPPI) algorithm is applied to **mitigate the pileup** (PU)
  - Instead of removing charged particles originating from PU as the Charged Hadron Subtraction (CHS) algorithm, PUPPI derives per-particle weights used to scale the 4-momenta before clustering



#### Matteo Malucchi

#### PNet $p_{T}$ regression calibration - ML4Jets

#### ParticleNet Architecture







#### PNet $p_{\rm T}$ regression calibration - ML4Jets

#### ParticleNet Tasks



PartilceNet performs multiple tasks:

- Jet flavour classification
  - Identification of b, c, uds, g,  $\tau_h$ , e,  $\mu$

#### • Jet energy regression

- Correct the **raw jet**  $p_{\rm T}$  to the **truth-level jet**  $p_{\rm T}$
- Prediction of the ratio between the truth-level jet  $p_{T}$  and the raw jet  $p_{T}$
- Factorized contribution to account for neutrinos
- Jet energy resolution
  - Estimate the 84% and 16% quantiles of the jet resolution distribution

## Jet Energy Corrections

- ETH zürich
- Jet Energy Scale calibration is presented, based on data collected in pp collisions at  $\sqrt{s}$  = 13.6 TeV by the CMS experiment in 2022 and 2023
- Jets are calibrated sequentially with what are referred to as **Jet Energy Corrections (JEC)**:
  - Detector response correction from simulation (Response Correction)
  - Residual correction for differences between data and detector simulation (**Relative and Absolute Residual Corrections**)
- JEC for PNet  $p_{T}$  regression:
  - Dedicated Response Correction has been derived
  - $\circ$  Performance of the existing Residual Corrections have been assessed
  - Final efforts for the complete calibration of the PNet  $p_{\rm T}$  regression are in progress, to potentially make this new baseline in CMS for Run 3



### **Response Correction - Experimental Techniques**



- The correction in simulation is derived by matching reconstructed and particle-level jets by requiring  $\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} < 0.2$
- Two different definitions of generator-level jets are used:
  - Particle-level jets are clustered from visible particles, referred to as particle (ptcl) jets. These jets are used as default when comparing to reconstructed (reco) jets
  - When comparing the  $p_{\rm T}$  of the reconstructed jets after applying the PNet  $p_{\rm T}$  regression that account for the presence of neutrinos, the particle-level jets include also **generator-level neutrinos**
- The PNet training and evaluation is performed using only jets with  $p_{T}^{raw} > 15 \text{ GeV}$  for now
  - To avoid biasing the corrections, only jets with  $p_{T}^{\text{ptcl}} > 50 \text{ GeV}$  are considered
  - $\circ$  ~ The evaluation threshold will be lowered for the next reprocessing
- Correction compute using QCD multijet simulated samples dominated by light quark and gluon jets

#### **Response Correction - Derivation**





PNet-regressed  $p_{\rm T}$  jets show a response distribution which peaks closer to 1 and is narrower compared to the raw  $p_{\rm T}$  response

## Response Correction from Simulation (2022)





- Jet response for PNet-regressed  $p_T$  shows significant improvement compared to the nominal jet response across the entire detector phase-space
  - PNet-regressed  $p_T$  shows stable response in the barrel ( $|\eta| < 1.3$ ), changes within ~ 2% compared to 8% for nominal jet response
  - Stronger momentum dependence in endcaps and forward regions w.r.t. barrel



### Response Correction from Simulation (2023)

- **ETH**zürich
- CMS

- PNet-regressed  $p_{T}$  shows better response compared to the nominal jet response
- Observed ~ 5% difference in jet response compared to 2022 in the barrel region and ~ 20-30% difference in the endcaps



#### PNet $p_{\rm T}$ regression calibration - ML4Jets

## Response Correction - Closure (2023)\*

- The median jet energy response in simulation, after jets are corrected for JES, is shown
- The level of residual non-closure after the application of the Response corrections for PNet-regressed  $p_{\rm T}$  is within **0.1%** for  $|\eta^{\rm reco}| < 2.4$
- Outside tracker acceptance ( $|\eta^{\text{reco}}| > 2.4$ ), the non-closure is within **1.5%**, which is better than the nominal jet response for which it reaches 4%



\* The closure is similar for 2022 and 2023 simulations

#### Matteo Malucchi

#### PNet $p_{T}$ regression calibration - ML4Jets

**ETH** zürich

### **Response Resolution (2023)**



After the application of the response correction, PNet  $p_{\rm T}$  regression improves the jet  $p_{\rm T}$  response resolution of ~15% w.r.t. the standard jet energy corrected  $p_{\rm T}$ 



### **Residual Corrections - Closure**

- **Relative (** $\eta$ **-dependent) residual correction:** measured as a function of  $|\eta|$  in **dijet** events with a reference jet in the barrel region ( $|\eta| < 1.3$ )
- Absolute (*p*<sub>T</sub>-dependent) residual correction: determined in the barrel from Z+jet, γ+jet, and multijet events, using the Z boson, photon, or multijet recoil as a reference
- Residual corrections are not recomputed for PNet-regressed p<sub>T</sub> jets, but the standard residual corrections are applied on data and a closure test is performed
- The residual non-closure of the relative corrections is provided in a η-p<sub>T</sub> jet heat map. An additional term is also included in quadrature to account for the non-closure originated by the absolute correction.
- The level of non-closure is approximately up to 2-5% (2-8%) for PNet-regressed  $p_{\rm T}$  without (with) neutrinos in the barrel and up to 10-20% in the endcap





13

### Summary and outlook



- First simulation based response correction for PNet-regressed  $p_{\rm T}$
- PNet  $p_{\rm T}$  regression **improves resolution by ~15%** w.r.t. the standard jet energy corrected  $p_{\rm T}$
- Closure test was perform for jets with PNet-regressed  $p_{\rm T}$  for the residual corrections
  - No additional significant disagreement introduced by the regression

#### **Outlook**

- Lower the  $p_{T}$  threshold for the evaluation of PNet to compute the corrections for low- $p_{T}$  jets
- Recompute the Residual Corrections for PNet-regressed  $p_{\rm T}$
- Compute the Jet Energy Resolution (JER) correction
  - $\circ$  Smear jet energy in simulation to match that in data
- Make PNet-regressed  $p_{\rm T}$  the new baseline in CMS for Run 3



### ParticleNet - EdgeConv Operation

**ETH** zürich



Node features **x**:

- $\Delta \eta$
- $\Delta \phi$
- Energy
- Impact parameter
- ...

#### EdgeConv operation

Function of learnable parameters  $\mathbf{e}'_n = \bar{\phi}^e(\mathbf{x}_{rn}, \mathbf{x}_{rn} - \mathbf{x}_{sn})$ Edge features Sender node Receiver node



Matteo Malucchi

07/11/2024

#### **ParticleNet - Information Flow**





#### ParticleNet Loss



The loss function of PNet is composed of multiple terms, each corresponding to a different task:



## Jet $p_{\rm T}$ response resolution



