

Sam Klein, **Stephen Mulligan**, Tobias Golling **ML4Jets**

Supervised ML trends

- Massive improvements in supervised learning
 - Architectural improvements
 - Lower level features

 Models trained on simulation but applied to data

• Domain shift!

Supervised ML

• Focus on binary classification

• Signal vs background

• Want to enhance signal and reduce background

• Common task in ML 4 HEP

Domain shift

- Do models transfer?
 - Require calibrating
 - Lose efficiency
- Worse in high dimensions
 - Bigger shift for low level features
 - ML trend to 'go lower'...

• How to **reduce** the **impact** of shift?

- Reduce sensitivity to mismodelling?
 - Adversarial attacks Franck Rothen, 11:50 am
- Reduce our **dependence on simulation?**

- Can we drop background simulation?
 - Will always be slightly mismodelled
 - If we don't need it, **drop it**

Standard CWoLa

• Classifier trained on two mixed samples M1 and M2

CWoLa Theorem

 The optimal classifier trained to distinguish M1 and M2 is also optimal for distinguishing S and B

- Data is an unknown mixture of signal and background
 - Could be pure background
 - Never background free

- Sample of simulated signal is **pure**
 - 100% signal samples

- CWoLa paradigm [<u>1708.02949</u>]
 - Label simulation one
 - Label data zero
 - Train **optimal classifier**

- Why does this work?
 - Classifier learns the likelihood ratio
 - Will learn the wrong likelihood ratio on simulated background!

• Enhance signal in data not simulation!

 Assumption - Signal vs data likelihood ratio will be closer

Experiments

- Use LHCO R&D dataset
 - Take Pythia as a proxy for data
 - Take Herwig as a proxy for simulation
 - Use Pythia signal
 - Not considering signal mismodelling
- Use high and low level features
 - High level jet mass, subjettiness
 - ο Low level p_T , Δη, Δφ
- Consider different amounts of signal contamination

Experiments

- Use in the context of a resonant new physics search
 - Strong performance is not the only requirement, often have auxiliary requirements

- E.g can we also decorrelate classifier from M_{μ} ?
 - Necessary for background estimate
 - Or just use data directly...
 - Using histograms

High level features

- Herwig
 - Standard approach trained on simulated background vs signal, evaluated on data

• sCWoLa slightly outperforms

• Mismodelling in high level features is small

Low level features

• Mismodelling increases

• sCWoLa outperforms

High Level Decorrelation

• Herwig - consistently lower 1/JSD

• Over-reliance on mass to achieve comparable performance

Low Level Decorrelation

• Similar trend at low level

• Simple method to train classifiers without simulated background

• With a data driven background estimate for M_{jj} could allow for dedicated searches with no background simulation

• Simple idea which needs to be fully explored in real settings!

Backup

Dataset

- Background QCD Dijets with p_{τ} = 1.3 TeV
- Signal $W' \rightarrow XY$ with $m_{W'} = 3.5 \text{ TeV}$, $m_{\chi} = 500 \text{ GeV}$, $m_{\gamma} = 100 \text{ GeV}$
- Pythia 8 and Herwig++
- Delphes 3.4.1 with standard CMS detector card
- Fastjet with anti-kt, jet radius of 1

Dataset - High Level

Dataset - Low Level

Models

- Low level BDTs
- High Level Transformers