

Transformer for Energy Calibration in the ATLAS Electromagnetic Calorimeter

Ryan Roberts for the ATLAS Collaboration ML4Jets - November 5, 2024

Ryan Roberts - ML4Jets 2024

Electrons and Photons Physics Goals

- Electrons and photons are key to many important measurements at the LHC
 - Important to separate interesting processes from large QCD **backgrounds**
 - More **precisely measured** than hadronic states
 - Includes precision **measurements**, rare SM processes, **and searches**
- Dedicated sub-detector to contain and measure the electromagnetic showers
 - Longitudinal and radial segmentation to measure the position and shape of the shower
 - Ultimate goals are reconstruction and identification efficiency, energy resolution, and fake rejection

of

Sum

The ATLAS LAr EM Calorimeter

- Sampling calorimeter with lead absorber and liquid argon active medium. Accordion geometry with three layers of projective cells.
 - Additional **pre-sampler** (layer 0) to sample energy lost in the inner detector and passive material
 - Layer 1 Finely segmented in η for γ/π_0 separation
 - Layer 2 Large depth to contain most of the shower energy
 - Layer 3 Thinner to measure the end of the shower and estimate punch-through
- Exact **cell sizes vary** in different regions of η
- Transition region of $1.37 < |\eta| < 1.52$ usually excluded from analysis

ATLAS e/y Calibration Why Calibrate?

- Topo-cluster algorithm forms connected clusters of cells with significant energy deposits
 - Nearby topo-clusters combined into super-clusters to form reconstructed e^{\pm} , γ .
- Energy losses outside the cluster require a correction to determine the true energy of the incident particle
 - Detector material upstream of the calorimeter
 - Passive material within the calorimeter
 - Punch-through to the hadronic calorimeter
- Other effects including energy deposits from in- and out-of-time pileup collisions and any effects from the clustering algorithm

Converted photons only:

Add topo-clusters that have the same conversion Add topo-clusters with a track match that is part of vertex matched as the seed cluster.

the conversion vertex matched to the seed cluster.

All e[±], γ:

Add all clusters within 3 × 5 window around seed cluster.

3 × 0.025

ATLAS e/y Calibration **Current Method**

- Calibration procedure must correct for complex detector effects and account for mis-modeling in the simulation of the EM shower and its digitization
- Today's focus: MC calibration simple regression from the total energy of all cells to the true energy of the simulated particle
- Currently performed by separate BDTs for electrons, unconverted photons, and converted photons
 - Trained separately in around 100 (E, η) bins
 - Training variables derived from the total energy deposited in each layer and from the angular position of the cluster

GNN/Transformer Models for Calorimeters

- Many channels, semi-regular geometric pattern, typical physics signatures are compact.
- Goal is to measure total deposited energy, but the energy distribution carries useful information.
 - Shower shape can indicate energy leakage and fluctuations from pileup collisions.
- Many suggestions that GNNs/Transformers* are well-suited to ML tasks in calorimetry.
- <u>Superclustering in CMS ECAL</u>, <u>HGCAL</u>. High luminosity in Belle-II.

*I will use these ~interchangeably. We are studying both, but the model I'll show today is best described as a transformer.

Point cloud representation of a calorimeter cluster.

More GNNs and Transformers for **Calorimeters at ML4Jets:**

<u>Clustering in CMS HGCAL</u>

Simulation for CaloChallenge Super Resolution and Denoising

Transformer for e/y Energy Calibration Cell features Architecture, Setup, and Training $E_i, \eta_i, \phi_i, \lambda_i, x_i, y_i, z_i$ (600, 7)

- Using the <u>SALT</u> framework developed for GNN based flavor tagging in ATLAS (<u>GN1/GN2/</u> <u>GN2X</u>)
- Cluster represented by **fully connected graph** formed from cells in all 3 accordion layers and the pre-sampler
- Node features: Cell energy, (x, y, z) coordinates, (η, ϕ) coordinates, and Cell Layer
- Cluster features: Cluster (E, η, ϕ)
- Extra tracking information for unconverted photons.
- Predict fractional correction to the cluster energy $E_{true}/E_{cluster}$ with MSE loss
- Separate trainings for electrons, unconverted photons, and converted photons based on single particle simulations with 2023-like pileup conditions

Training and Initial Performance Tests

- Each training performed on ~60M simulated clusters for 48 hours on 16 Nvidia A100 GPUs
- BDT and GNN correct the **raw** cluster energy distribution to match the true energy
- The core of the distribution is narrower for the **GNN** improved resolution

Ratio of calibrated to true energy for electrons with: $30 < E < 100 \text{ GeV}, |\eta| < 1.37$

Training and Initial Performance Tests

- Similar improvement for photons.
- Generally see that the performance gain for the **GNN** is less for converted photons.

9

Resolution Improvements from Transformer Model

- Figure of merit is resolution important to maintain performance in different detector regions (η) and energies.
- Measure the width of the $E_{\rm reco}/E_{\rm truth}$ peak with $\sigma_{rel}^E = \frac{IQR}{1.349\langle E_{\rm reco}/E_{\rm truth}\rangle}$ is equal to standard deviation for a normal distribution.
- GNN shows better resolution than BDT across most of the phase space.

Resolution Improvements from Transformer Model

• Similar improvement for photons. Again see less improvement for converted photons, greater improvement in the endcap.

Ryan Roberts - ML4Jets 2024

Pileup Dependence

- Performance in high pileup conditions is crucial for both Run 3 and HL-LHC
- GNN calibration's energy resolution degrades less with increasing pileup

Ryan Roberts - ML4Jets 2024

GNN trained with Run 3-like pileup ($\langle \mu \rangle = 51$). BDT trained without pileup.

12

Outlook for GNN/Transformer e/y Energy Calibration

- Transformer based energy calibration shows substantial resolution improvement over current methods

 potential for significant impact on physics results
- Next major challenge is to confront data/MC discrepancies and work on the downstream calibration tasks
 - Some techniques, like layer energy corrections, not suited for GNN
 - Systematics model may need to be revisited
- Options for tuning the architecture, inputs, and training procedure already early evidence of possible performance gains
 - Inclusion of edge features, loss function adjustments, usage of tile gap scintillators, feature importance studies
- Also working on technical details for integration with the full ATLAS reconstruction software

13

Thanks!

Backup

1	5

Transformer for e/y Energy Calibration Special Treatment of Converted Photons

- Photons which convert in the inner detector volume require special treatment to achieve reasonable performance
 - Important to preserve performance 20-65% of photons depending on η
- BDT and GNN take use tracking inputs describing the reconstructed conversion vertex
 - Conversion radius
 - p_T ratio of conversion tracks
 - $E_T^{\text{cluster}}/p_T^{\text{vertex}}$

ATL-PHYS-PUB-2009-006

0 • • • •

