## **Introducing Aspen Open Jets:** a real-world ML-ready dataset for jet physics

lan Pang, Oz Amram, Luca Anzalone, Joschka Birk, Darius Faroughy, Anna Hallin, Gregor Kasieczka, Michael Krämer, Alexander Mück, Humberto Reyes-Gonzalez, David Shih

Nov 4, 2024 ML4Jets, Paris





ian.pang@physics.rutgers.edu



ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA







the initial ideas were discussed!

https://www.travelandleisure.com/travel-guide/aspen

## New dataset named after Aspen, Colorado where



## Outline

### 1. Aspen Open Jets (AOJ)

- Dataset overview
- First ML-ready dataset with real jets
- Jet and constituent features

2. AOJ for ML

- Using AOJ
- Unsupervised pre-training
- Results



## **Aspen Open Jets Dataset overview**

- **CMS** released 16.4 fb<sup>-1</sup> of data from their 2016 run (CMS open data 'JetHT')
- Data provided in MINIAOD format
- We then processed the data to PFNANO format
- Select **AK8 jets** of interests:
  - One or more triggers related to jet momenta or total event hadronic activity
  - Jet  $p_T > 300 \text{ GeV}$ , jet  $|\eta| < 2.5$
  - Other data quality filters
- Total of ~180M jets in ML-ready format!



## **Aspen Open Jets Dataset overview**

- **CMS** released 16.4 fb<sup>-1</sup> of data from their 2016 run (CMS open data 'JetHT')
- Data provided in MINIAOD format
- We then processed the data to PFNANO format
- Select **AK8 jets** of interests:
  - One or more triggers related to jet momenta or total event hadronic activity
  - Jet  $p_T > 300 \text{ GeV}$ , jet  $|\eta| < 2.5$
  - Other data quality filters
- Total of ~180M jets in ML-ready format!





4/17

## **Aspen Open Jets Dataset overview**

- **CMS** released 16.4 fb<sup>-1</sup> of data from their 2016 run (CMS open data 'JetHT')
- Data provided in MINIAOD format
- We then processed the data to PFNANO format
- Select **AK8 jets** of interests:
  - One or more triggers related to jet momenta or total event hadronic activity
  - Jet  $p_T > 300 \text{ GeV}$ , jet  $|\eta| < 2.5$
  - Other data quality filters
- Total of ~180M jets in ML-ready format!



## **Aspen Open Jets** First ML-ready dataset with real jets

- Total of ~180M jets!
- Mostly QCD jets
- For <u>each jet</u>:
  - Jet  $p_T, \eta, \phi$
  - Soft drop mass
  - N-subjettiness:  $\tau_1, \tau_2, \tau_3, \tau_4$
  - Number of constituents

- Up to 150 constituents per jet
- For <u>each constituent</u>:
  - 4-momenta  $(p_x, p_y, p_z, E)$
  - Trajectory displacements  $d_0$ ,  $d_z$ and their uncertainties  $\sigma_{d_0}$ ,  $\sigma_{d_z}$
  - Particle charge and PID
  - PUPPI weights





## Features in plots are computed from jet constituents





## Features in plots are computed from jet constituents





## Features in plots are computed from jet constituents

















![](_page_13_Picture_2.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_3.jpeg)

200

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_2.jpeg)

AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>

![](_page_22_Picture_3.jpeg)

• AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>

No explicit class info about type of jet (e.g. top jet)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

• AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>

[1] https://zenodo.org/records/6619768

Different from JetClass [1] dataset which has 125M jets with a total 10 jet types

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>

![](_page_25_Picture_3.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be mostly QCD jets (~125k top jets)

![](_page_26_Picture_5.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be <u>mostly QCD jets</u> (~125k top jets)
- Can we train pre-train a large model in an <u>unsupervised</u> way on AOJ?

![](_page_27_Picture_4.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be <u>mostly QCD jets</u> (~125k top jets)
- Can we train pre-train a large model in an <u>unsupervised</u> way on AOJ?
- Does <u>finetuning</u> the pre-trained model on downstream tasks provide <u>performance</u> <u>gain</u>?

![](_page_28_Picture_5.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be <u>mostly QCD jets</u> (~125k top jets)
- Can we train pre-train a large model in an <u>unsupervised</u> way on AOJ?
- Does <u>finetuning</u> the pre-trained model on downstream tasks provide <u>performance</u> <u>gain</u>?
- Example:

![](_page_29_Picture_6.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be <u>mostly QCD jets</u> (~125k top jets)
- Can we train pre-train a large model in an <u>unsupervised</u> way on AOJ?
- Does finetuning the pre-trained model on downstream tasks provide performance gain?
- **Example:** 
  - 1. Pre-train generative model on AOJ (~180M jets)

![](_page_30_Picture_8.jpeg)

- AOJ is a large dataset (~180M jets) of <u>unlabeled data</u>
- Expected to be mostly QCD jets (~125k top jets)
- Can we train pre-train a large model in an <u>unsupervised</u> way on AOJ?
- Does <u>finetuning</u> the pre-trained model on downstream tasks provide <u>performance</u> <u>gain</u>?
- Example:
  - 1. Pre-train generative model on AOJ (~180M jets)
  - 2. Fine-tune on generating JetClass top jets

![](_page_31_Picture_8.jpeg)

## **Unsupervised** pre-training **Based on Omnijet-** $\alpha$ architecture (2403.05618)

![](_page_32_Figure_1.jpeg)

- Tokenized jet constituents  $(p_T, \eta^{\text{rel}}, \phi^{\text{rel}})$
- GPT-style generation: Next-token prediction

![](_page_32_Figure_6.jpeg)

![](_page_32_Picture_9.jpeg)

## **Unsupervised** pre-training **Based on Omnijet-** $\alpha$ architecture (2403.05618)

![](_page_33_Figure_1.jpeg)

- Tokenized jet constituents  $(p_T, \eta^{rel},$
- GPT-style generation: Next-token prediction

$$,\phi^{\mathrm{rel}})$$

![](_page_33_Picture_6.jpeg)

## **Unsupervised** pre-training **Based on Omnijet-** $\alpha$ architecture (2403.05618)

![](_page_34_Figure_1.jpeg)

- Tokenized jet constituents  $(p_T, \eta^{rel},$
- GPT-style generation: Next-token prediction

$$,\phi^{\mathrm{rel}})$$

![](_page_34_Picture_6.jpeg)

## Results **Does fine-tuning provide performance gain?**

• Fine-tuned:

Tokenizer: Trained on all AOJ jets Generative model: Pre-trained on all AOJ jets

• From scratch:

Tokenizer: Trained on all JetClass [1] jets

Generative model: No pre-training

[1] https://zenodo.org/records/6619768

![](_page_35_Picture_11.jpeg)

## Results **Does fine-tuning provide performance gain?**

**Fine-tuned:** 

Tokenizer: Trained on all AOJ jets Generative model: Pre-trained on all AOJ jets

From scratch:

Tokenizer: Trained on all JetClass [1] jets

Generative model: No pre-training

[1] https://zenodo.org/records/6619768

![](_page_36_Figure_7.jpeg)

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_37_Picture_0.jpeg)

## Downstream task: Generating TOP jets from JetClass [1]

[1] https://zenodo.org/records/6619768

![](_page_37_Picture_3.jpeg)

## Results **Metrics for comparing HLF histograms**

Kullback-Leibler divergence (KLD)

 $KL(P \mid \mid Q) = \sum_{x} p(x) \log\left(\frac{p(x)}{q(x)}\right)$ 

Wasserstein-1 distance

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_6.jpeg)

## Results **Metrics for comparing HLF histograms**

Kullback-Leibler divergence (KLD)

Wasserstein-1 distance

![](_page_39_Picture_4.jpeg)

![](_page_39_Picture_5.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_3.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_3.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_49_Figure_2.jpeg)

![](_page_49_Picture_3.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

![](_page_50_Picture_4.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_3.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_53_Figure_3.jpeg)

![](_page_53_Picture_4.jpeg)

<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

![](_page_54_Figure_1.jpeg)

**~~<u>₽</u>₽₽</mark>₽~~** 

![](_page_54_Picture_2.jpeg)

![](_page_55_Figure_1.jpeg)

By construction, next-token prediction models can predict the number of jet constituents (i.e. predicting position of stop token)

<u>₽₽</u>₽<u>₽</u>₽₽

![](_page_55_Picture_3.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

Number of constituents is not learned when training on only a 100 jets

![](_page_56_Picture_4.jpeg)

![](_page_57_Figure_1.jpeg)

The number of constituents is learned when training on more jets

![](_page_57_Picture_3.jpeg)

<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

![](_page_58_Figure_1.jpeg)

**~~<u>₽</u>₽₽</mark>₽~~** 

![](_page_58_Picture_2.jpeg)

![](_page_59_Picture_63.jpeg)

Aspen Open Jets is a new, large dataset with real/actual CMS jets

![](_page_60_Picture_3.jpeg)

- Aspen Open Jets is a new, large dataset with real/actual CMS jets
- results in performance gain in a downstream generation task

As a proof-of-concept, we show how pre-training on generating AOJ jets

![](_page_61_Picture_5.jpeg)

- Aspen Open Jets is a new, large dataset with real/actual CMS jets
- As a proof-of-concept, we show how pre-training on generating AOJ jets results in performance gain in a downstream generation task
- Stay tuned! Plan to release the Aspen Open Jets dataset on Zenodo at the same time as our paper arXiv 2411.XXXXX

![](_page_62_Picture_4.jpeg)

- Aspen Open Jets is a new, large dataset with real/actual CMS jets
- results in performance gain in a downstream generation task
- same time as our paper arXiv 2411.XXXXX

• As a proof-of-concept, we show how pre-training on generating AOJ jets

Stay tuned! Plan to release the Aspen Open Jets dataset on Zenodo at the

### I hank vou!

![](_page_63_Picture_9.jpeg)

Backup

## **Previous ML works with real CMS data**

- 1704.05066
- 1704.05842
- 1908.08542

Jet datasets with fewer jets than AOJ

2312.06909 - single-lepton datasets

![](_page_65_Figure_6.jpeg)

## **Tokenized features**

- Total of 8192 tokens
- Found that increasing number of tokens did not significantly increase reconstruction quality

![](_page_66_Figure_3.jpeg)