Deep Learning on Jet Modification in the Presence of the QGP Background

Ran Li Shandong University

ML4Jets2024 Nov 4 – 8, 2024

In collaboration with: Shanshan Cao, Yi-Lun Du

Jets in high-energy nuclear collisions

- Quark-gluon plasma (QGP) in heavy-ion collisions: deconfined phase, hot dense medium
- Jets are quenched in the medium via parton energy loss, serving as hard probe to medium properties.

ATLAS collaboration PLB 790 (2019) 108

 $R_{AA} = \frac{\text{Spectrum in AA}}{\text{Spectrum in pp}}$

Jet energy loss from a statistical viewpoint \mathbf{Q}

Energy loss on a jet-by-jet basis

Outline

- Jet Momentum Reconstruction
 in Heavy-Ion Background
- Extracting Jet Energy Loss on a Jet-by-Jet Basis

Background Subtraction Methods

Conventional method in experiments: Area-based method

- Event-by-event basis: background momentum density ρ
- For each jet: reconstructed jet momentum $p_T^{rec} = p_T^{raw} - \rho A$.
- Leads to large residual fluctuations

Constituent Subtraction (CS)

- Local subtraction of soft background
- Simultaneously correcting the 4momentum of the jet and its substructures

ML techniques

Neural Network, Linear Regression, Random Forest...

ML-Based Jet Momentum Reconstruction in ALICE

ML method shows more precise estimate for low p_T jets

- Avoid fragmentation bias in R_{AA} by separate training with Pythia jets and their variants
- How about performance of this pythia-trained model on quenched jets?

5

Data generation: PYTHIA8 + LBT

- Vacuum jets: PYTHIA8
- Jet interaction with QGP: Linear Boltzmann Transport model
- PbPb collisions in 0-10% centrality at $\sqrt{S} = 5.02 TeV$.
- QGP background: a toy thermal model
- Reconstructed jets with anti- k_T , R=0.4

Target output: jet true p_T

Sum of the **jet particle** p_T **in cone**, in the presence of background particles.

Jet observables Input:

- the uncorrected jet momentum,
- the jet transverse momentum, corrected by the area-based method,
- jet mass, radial moment, momentum dispersion, and LeSub,
- the number of constituents within the jet,
- mean and median of all constituent transverse momenta,
- the transverse momenta of the first ten leading.

Background

Following Boltzmann distribution

	$\pi^+ + \pi^-$	
Centrality	dN/dy	$\langle p_T \rangle$
0-5%	1699.80	0.5682 GeV

Acharya S, Adamová D, Adhya S P, et al. PHYS. REV. C 101, 044907(2020)

Performance

Training data: Pythia Output: Jet Particle p_T in cone

Training data: LBT Output: Jet Particle p_T in cone

- When trained on PYTHIA jets, the ML model shows a prediction bias when applied to LBT jets.
- ML may consider the recoil particles as background.

-recoil particle: a particle excited from the medium after colliding with a jet particle

- Prediction bias is significantly reduced when the ML model is trained on LBT jets
- Better than conventional methods

Nuclear Modification Factor *R*_{*AA*}

$$R_{AA} = \frac{\text{Spectrum in AA}}{\text{Spectrum in pp}}$$

• R_{AA} with ML(LBT) is much closer to that of "jet particle p_T in cone" than ML(Pythia).

Nuclear Modification Factor *R*_{*AA*}

Area-based: underestimates
 the R_{AA} in comparison with
 that of "jet particle p_T in cone"

- CS method: agrees with R_{AA} of "jet particle p_T in cone" down to 70 GeV
- Discrepancy between the ML target output and baseline of LBT-generated jets without background particles (LBT only)

Matching with LBT-only jets

Training data : LBT Output: Matched p_T

Drop fake jets in training

- Matching the jets clustered from LBT particles w/ and w/o background particles.
- Matching criteria: $\Delta \theta < 0.4$
- Target output (Matched p_T): the p_T of matched LBT-only jet

Set fake jets p_T as 0 in training

Outline

- Jet Momentum Reconstruction
 in Heavy-Ion Background
- Extracting Jet Energy Loss on a Jet-by-Jet Basis

Define the Energy Loss Ratio

Previous work

Introduce & Subtract background

 Following Boltzmann distribution 			
$\pi^+ + \pi^-$			
Centrality	dN/dy	$\langle p_T \rangle$	
0-5%	1699.80	0.5682	

Constituent Subtraction

Only jet particles

More applicable in experiments

Jet image and pre-processing

Without Background

- With constituent subtraction, jet images largely revert to their original patterns, free from background interference.
- Jet quenching increases the number of soft particles at large angles.

Introduce & Subtract Background

Prediction performance

Without Background

- Well predicted for a wide range of χ
- Slightly decreases when introducing background

- Machine learning method provides a more precise estimate for the jet momentum by training with the quenched jets.
- By training with matched jets, we can obtain R_{AA} more accurately.
- CNN can effectively extract energy loss ratio jet-by-jet from jet image in the presence of QGP background.
- Machine learning is applicable to more realistic environment.

THANK YOU

Back up

Jet image and pre-processing

- The total p_T of jet constituents deposited in the pixel of (η, φ) space with 33 η-bins and 33 φ-bins.
- Translation: the hardest groomed subjet is at $(\eta, \phi) = (0, 0)$.
- Rotation: the second hardest groomed subjet is at $-\pi/2$.
- aligning the first principal component of pixel intensity distribution along the vertical axis.
- Parity flip: right side of jet image has a larger pixel intensity sum

Input

Convolutional Neural Network (CNN)

