Transformer networks for constituent-based b-jet calibration with the ATLAS detector

Brendon Bullard on behalf of the ATLAS Collaboration

SLAC National Accelerator Laboratory

ML4Jets - <u>Reconstruction Session</u> November 5, 2024

NATIONAL ACCELERATOR LABORATORY

calibration with the ATLAS detector

Physics motivation

Measuring $H \rightarrow bb$ constrains **bottom Yukawa**

Limited by poor jet momentum resolution and large continuum multi-jet and $Z \rightarrow bb$ bkg

Brendon Bullard

b-jet momentum calibration with transformers

Di-Higgs production is a critical target, gives handle on Higgs self-coupling

	bb	ww	ττ	ZZ	ΥY
bb	34%	70%!	Brand	ching fra	ctions
ww	25%	4.6%	of the	the two	Higgs
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Improving the reconstruction of **b-quark jets** has huge impact

Jet reconstruction

+ Jets are the most complex objects produced at colliders Needs careful combination of signatures in tracker and calorimeters

- Cluster constituents using anti-k_T algorit
 - Use different radius pa depending on the tarc space (e.g. low/high-p

Brendon Bullard

Jet constituents

Eur. Phys. J. C 77 (2017) 466 + Originally ATLAS only used calorimeter cells for jets

- - Avoid double-counting energy/momentum, boosts performance at low-p_T (used for Small-R)
- + Recently developed unified flow objects, leverage angular resolution of tracker and energy resolution of calorimeter at high-p_T (used for Large-R jets)

Brendon Bullard

b-jet momentum calibration with transformers

+ Now we are using particle flow objects: combine tracks and calo-clusters

Physics of b-jets

+ B-jet signatures are unique due to secondary vertex

+ Baseline strategy: μ-in-jet addition to jet 4-mom, apply PtReco correction to jet p_T

• Coarse-grained correction binned in jet p_T , split into leptonic and hadronic decays

Jet definitions

+ Define jets at truth-level and match to reco-level using ΔR matching

- Small-R: include neutrinos and muons in truth jet definition
- Large-R: not including neutrinos and muons, only correcting hadronic activity^(for now)
- + Low-p_T/mass thresholds for jets to avoid bias in the training
 - Small-R: 7 (10) GeV for truth (reco)-level jets will calibrate $p_T > 20$ GeV • Large-R: 200 < p_T < 1500 GeV, jet mass between [20, 300] GeV

Select truth jet with largest p_T within $\Delta R < 0.4$ (0.75) \rightarrow robust to presence of nearby soft radiation

Soft truth jet (mismatch)

Correct truth jet

b-jet momentum calibration with transformers

Brendon Bullard

Constituent defini

Apply tight selection requir

- + Use soft muon and soft elec
 - Boosted decision trees using le
 - Enhance sensitivity to semi-lep

Parameter	Requirement	0.2≓ ''''' 0.18⊢
Track Sele	% 0.16 □	
p_{T}	> 500 MeV	
Silicon hits	≥ 8	ш 0.12
Shared silicon hits	≤ 1	0.1
Silicon holes	< 2	0.08
Pixel holes	< 1	0.06
Track-to-Vertex	0.04	
$ d_0 $	< 3.5 mm	0.02
$ z_0 \sin \theta $	< 5 mm	

Brendon Bullard

b-jet momentul... canalation music unanger se

<u>EPS-HEP-2017</u>

— h iets

Neural network input features

Jet features

p_T, η, mass**

Track features

- Perigee parameters & uncertainties
- Number of hits in pixel/strip layers
- Track used for reconstructing lepton

Brendon Bullard

Training samples Small-R jets

Jet p⊤

Brendon Bullard

b-jet momentum calibration with transformers

Jet Mass

Details in <u>backup</u>

Neural network architecture

Based on ATLAS flavor-tagging architecture

- anti-k_T R=0.4 PFlow (small-R) jets use **track** constituents
- anti-k_T R=1.0 UFO (large-R) jets use **track** and **flow object** constituents

Brendon Bullard

Response distributions

- Key observable is pT (and mass) response
 - Defined by p_T^{reco}/p_T^{truth}
- Study NN performance as a function of N_{muons}
 - Proxy for B-decay channel
- Looking for narrow peaks in the response distribution around 1.0

Median response flattens with regression

Brendon Bullard

Relative resolution improves up to 30%, only 20% for PtReco

+ Even though they are independent algorithms, clear correlation between flavor-tagging discriminant and regression performance Honing in on the same signatures — B-decay length, track multiplicity, etc.

Brendon Bullard

Resonance resolution

+ Evaluation on key di-jet resonances leads to 23% reduction in relative resolution on the Higgs peak!

- More modest gain of 5% relative to PtReco corrections
- Can be improved via optimization (e.g. using Z/H samples in training)

Brendon Bullard

Large-R resonance spectrum

Brendon Bullard

b-jet momentum calibration with transformers

 $---- t \rightarrow qq'b$

220

Evaluate on SM resonances (Z/H/top)

- Significant sharpening of Z/H mass peaks
- Still a long way to go to reach truth-level

+ No mass sculpting in the QCD continuum

- Use of flat-mass samples eliminates
- SM mass point bias

Outlook

Thanks for your attention!

Training datasets -

	Process	Generator	Parton shower	PDF set		
	Training, validation and test samples					
	$pp \rightarrow t\bar{t}$ fully/semileptonic	Powheg [29,30,31]	Pythia 8.230 [23] with A14 [32]	NNPDF3.0nlo [24]		
Small-R	$pp \rightarrow Z(\mu\mu) + jets \dagger$	MadGraph5_aMC@NLO [33] + FxFx [34]	Pythia 8.245 with A14	NNPDF3.0nlo		
	Evaluation samples					
	$pp \to Z(\ell\ell)H(b\bar{b})$	Роwнед Box v2 [29,30,31] + MiNLO [35,36,37]	Pythia 8.230 with AZNLO [38]	NNPDF3.0nlo		
	$pp \to Z(\ell \ell) Z(b\bar{b})$	Sherpa [27]	Sherpa 2.2.11	NNPDF3.0nnlo		

	Jet type	Process	Event generator and tune	PDF set	
	Training, validation and test samples				
	$H(b\bar{b})$	$q\bar{q} \to ZH, Z \to \mu^+\mu^-$	Pythia 8.306 [23] with A14 [32]	NNPDF3.0nlo [24]	
	$H(c\bar{c})$	$q\bar{q} ightarrow ZH, Z ightarrow \mu^+ \mu^-$	Pythia 8.306 with A14	NNPDF3.0nlo	
	QCD †	Multijet	Pythia 8.235 with A14	NNPDF2.3lo	
Large-R	QCD $(b\bar{b})$ ‡	Multijet $(b\bar{b}),$ $N_{\rm jet} \ge 4, N_{b-\rm jet} \ge 2$	Pythia 8.235 with A14	NNPDF2.3lo	
	Evaluation samples				
	$H(bar{b})$	$q\bar{q}/gg \to ZH, \ Z \to \ell\bar{\ell}/\nu\bar{\nu}/q\bar{q}$	Powheg v2 +Pythia 8.212 [30] with AZNLO [38]	NNPDF3.0nlo	
	Top	$Z' ightarrow t \dot{ar{t}}$	Pythia 8.235 with A14	NNPDF2.3lo	
	$Z(bar{b})$	$Z \to b \bar{b}$	Sherpa $2.2.11$ [27]	NNPDF3.0nnlo	
	QCD †	Multijet	Pythia 8.235 with A14	NNPDF2.3lo	

Brendon Bullard

Model input features —

p_{T} Transverse momentum η Transverse momentum η p_{T} Transverse momentum η Signed pseudorapidity ϕ p_{T} Transverse momentum η η Signed pseudorapidity ϕ p_{T} Transverse momentum Signed pseudorapidity dR Angular distance of the soft muon from the small- R jet axis p_{T} Transverse momentum Signed pseudorapidity dR Angular distance of the soft muon from the small- R jet axis η Signed pseudorapidity dR Momentum Balance SignificanceRatio of the difference in momentum measured by the ID and MS to th uncertainty on the energy loss measured by the calorimetersTrack darge divided by reconstructed momentum q/p DescriptionScattering Neighbour SignificanceSum of the significances of the angular difference $\Delta \phi$ between pairs of adje cent hits along the track, multiplied by the particle charge q/p Track charge divided by reconstructed momentum q/p p_{T}^{rel} Orthogonal projection of the muon p_{T} onto the jet axis $d\phi$ Azimuthal angle of the track, relative to the jet ϕ d_0 Transverse IP: Closest distance from track to PV in the longitudinal plane $\sigma(d_0)$ $\sigma(d_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\theta)$ Uncertainty on track azimuthal angle ϕ $\sigma(d_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\theta)$ Uncertainty on track azimuthal angle ϕ $\sigma(d_0)$ Significance of longitudinal IP $\sigma(\theta)$ Uncertainty on track charge ϕ $\sigma(d_0)$ Significance of longitudinal IP $\sigma(\theta)$ Uncertainty on t			Soft Muon Input	Description
Jet featureDescription η ϕ Signed pseudorapidity λ Zimuthal angle p_{T} Transverse momentum q/p Muon charge divided by the reconstructed momentum p_{T} Transverse momentum q/p Muon charge divided by the reconstructed momentum p_{T} Transverse momentum q/p Muon charge divided by the reconstructed momentum $m \pm$ Jet mas q/p Momentum Balance SignificanceRatio of the difference in momentum measured by the ID and MS to thTrack & charged UFO featureDescriptionScattering Neighbour SignificanceSum of the significances of the angular difference $\Delta\phi$ between pairs of adjet cert this along the track, multiplied by the particle charge d_{I} Pseudorapidity of track relative to the jet η d_{0} Transverse IP: Closest distance from track to beam-line in the transverse plane $a_{0}(d_{0})$ Uncertainty on track polar angle θ $\sigma(d_{0})$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_{0})$ Uncertainty on measurement of transverse IP $\sigma(\phi)$ Significance of transverse IP $\sigma(d_{0})$ Significance of transverse IP $\sigma(\phi)$ Significance of longitudinal IP times the sin of the polar angle $\sigma(z_{0})$ Significance of transverse IP $\sigma(\phi)$ Significance of longitudinal IP times the sin of the polar angle $\sigma(z_{0})$ Significance of transverse IP $\sigma(\phi)$ Significance of longitudinal IP times the sin of the polar angle $\sigma(z_{0})$ Significance of longitudinal IP $\sigma(\phi)$ Significance of longitudinal IP tim			$p_{ m T}$	Transverse momentum
ϕ Azimuthal angleJet featureDescription dR Angular distance of the soft muon from the small- R jet axis pr Transverse momentum q/p Muon charge divided by the reconstructed momentum η Signed pseudospidityMuon charge divided by the reconstructed momentum measured by the ID and MS to th uncertainty on the energy loss measured by the calorimeters $m \ddagger$ Jet massScattering Neighbour SignificanceSum of the significance of the angular difference $\Delta \phi$ between pairs of adje cert hits along the track, multiplied by the particle charge $d\eta$ Pseudorapidity of track relative to the jet η Scattering Neighbour SignificanceSum of the significance from track to beam-line in the transverse plane a_0 Transverse IP: Closest distance from track to PV in the longitudinal plane $\sigma(d_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $d_0/\sigma(d_0)$ Significance of transverse IP $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $d_0/\sigma(d_0)$ Significance of transverse IP $\sigma(\phi)$ Significance of transverse IP $d_0/\sigma(d_0)$ Significance of longitudinal IP $\sigma(\phi)$ Significance of transverse IP $d_0/\sigma(d_0)$ Significance of longitudinal IP $\sigma(\phi)$ Significance of prize hitsNumber of SCT hitsSoft Electron Input			η	Signed pseudorapidity
Jet featureDescription dR Angular distance of the soft muon from the small- R jet axis $p_{\rm T}$ Transverse momentum q/p Muon charge divided by the reconstructed momentumMuon charge divided by the reconstructed momentum η Signed pseudorapidityMomentum Balance SignificanceRatio of the difference in momentum measured by the ID and MS to the uncertainty on the energy loss measured by the calorimeters $m \pm$ Jet massScattering Neighbour SignificanceSum of the significance of the significance of the soft muon p_T on the jet axis q/p Track charge divided by reconstructed momentum p_T^{rel} Orthogonal projection of the muon p_T onto the jet axis q/p Azimuthal angle of the track, relative to the jet η d_0 Transverse IP: Closest distance from track to beam-line in the transverse plane $a_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track polar angle θ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(d_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of transverse IP $\sigma(z_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $\sigma(z_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $\sigma(z_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $\sigma(z_0)$ Significance of longitudinal IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $\sigma(z_0)$ <td< td=""><td></td><th></th><td>ϕ</td><td>Azimuthal angle</td></td<>			ϕ	Azimuthal angle
Jet featureDescription q/p Muon charge divided by the reconstructed momentum p_{T} Transverse momentumSigned pseudorapidityMomentum Balance SignificanceRatio of the difference in momentum measured by the ID and MS to the uncertainty on the energy loss measured by the calorimeters $m \ddagger$ Jet massScattering Neighbour SignificanceRatio of the difference $\Delta \phi$ between pairs of adje q/p Track charge divided by reconstructed momentumScattering Neighbour SignificanceRatio of the difference $\Delta \phi$ between pairs of adje q/p Track charge divided by reconstructed momentum p_T^{rel} Orthogonal projection of the muon p_T onto the jet axis d_p Azimuthal angle of the track, relative to the jet η d_0 Transverse IP: Closest distance from track to beam-line in the transverse plane $z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Congitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_0)$ Uncertainty on measurement of transverse IP $\sigma(\phi)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(b_0)$ Significance of pixel hits $\sigma(d_0/\sigma(z_0)$ Significance of longitudinal IP $s(b_0)$ Significance of pixel hits $z_0/\sigma(z_0)$ Significance of longitudinal IP $r(p)$ Significance of pixel hits p_T^{rel} $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(b_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP<			dR	Angular distance of the soft muon from the small- R jet axis
$p_{\rm T}$ Transverse momentum Signed pseudorapidity Jet masMomentum Balance SignificanceRatio of the difference in momentum measured by the ID and MS to the uncertainty on the energy loss measured by the calorimeters $m \ddagger$ Jet masScattering Neighbour SignificanceRatio of the difference in momentum measured by the ID and MS to the uncertainty on the energy loss measured by the calorimeters $Tack \& charged UFO featureDescriptionScattering Neighbour SignificanceRatio of the angular difference \Delta \phi between pairs of adjacent hits along the track, multiplied by the particle chargeq/pTrack charge divided by reconstructed momentumdqPseudorapidity of track relative to the jet \etap_{\rm T}^{\rm rel}Orthogonal projection of the muon p_{\rm T} onto the jet axisd\phiAzimuthal angle of the track, relative to the jet \etap_{\rm T}^{\rm rel}OUncertainty on track to beam-line in the transverse plane\sigma(q)\sigma(q/p)Uncertainty on q/pUncertainty on track to PV in the longitudinal plane\sigma(d_0)\sigma(d_0)Uncertainty on measurement of transverse IP\sigma(\phi)Uncertainty on track azimuthal angle \phi\sigma(z_0)Uncertainty on measurement of longitudinal IP\sigma(\phi)Significance of longitudinal P times the sin of the polar angle\sigma(\sigma(\sigma_0)Significance of longitudinal IP\sigma(\phi)Significance of longitudinal IP times the sin of the polar angle\sigma(\sigma(\sigma_0)Significance of longitudinal IP\sigma(\phi)Significance of longitudinal IP times the sin of the polar angle\sigma(\sigma(\sigma_0)Significance of longitudinal IP\sigma(\phi)Significance of longitudinal IP t$	Jet feature	Description	q/p	Muon charge divided by the reconstructed momentum
η Signed pseudorapidity $m \ddagger$ uncertainty on the energy loss measured by the calorimeters $m \ddagger$ Jet massuncertainty on the energy loss measured by the calorimetersTrack & charged UFO featureDescriptionScattering Neighbour SignificanceScattering Neighbour Significance q/p Track charge divided by reconstructed momentum p_T^{rel} Scattering Neighbour SignificanceScattering Neighbour Significance $d\phi$ Azimuthal angle of the track, relative to the jet η p_T^{rel} Orthogonal projection of the muon p_T onto the jet axis d_{ϕ} Azimuthal angle of the track, relative to the jet ϕ d_0 Transverse IP: Closest distance from track to PV in the longitudinal plane $z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(\phi)$ Uncertainty on track polar angle θ $\sigma(z_0)$ Uncertainty on track azimuthal angle ϕ $d_0/\sigma(d_0)$ $s(d_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(d_0)$ Significance of longitudinal IP times the sin of the polar angle $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(d_0)$ Significance of SCT hitsNumber of SCT hitsNumber of SCT hitsProduct of the polar angle	p_{T}	Transverse momentum	Momentum Balance Significance	Ratio of the difference in momentum measured by the ID and MS to the
$m \downarrow$ Jet massSeattering Neighbour SignificanceSum of the significances of the angular difference $\Delta \phi$ between pairs of adject cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge cent hits along the track, multiplied by the particle charge d_{0} d_{ϕ} Azimuthal angle of the track, relative to the jet ϕ d_{0} Transverse IP: Closest distance from track to beam-line in the transverse plane $z_{0} \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_{0} Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on track polar angle θ $\sigma(z_{0})$ Uncertainty on measurement of transverse IP $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $d_{0}/\sigma(d_{0})$ Significance of transverse IP $s(z_{0} \sin \theta)$ Significance of longitudinal IP times the sin of the polar angle $d_{0}/\sigma(d_{0})$ Significance of longitudinal IP p_{T} Soft Electron InputDescription $nSCTHits$ Number of SCT hits p_{T} Relative p_{T} of the electron with respect to the jet	η ,	Signed pseudorapidity	C	uncertainty on the energy loss measured by the calorimeters
Track & charged UFO featureDescriptioncent hits along the track, multiplied by the particle charge q/p Track charge divided by reconstructed momentum p_T^{rel} Cent hits along the track, multiplied by the particle charge q/p Track charge divided by reconstructed momentum p_T^{rel} Orthogonal projection of the muon p_T onto the jet axis $d\phi$ Azimuthal angle of the track, relative to the jet ϕ d_0 Transverse IP: Closest distance from track to beam-line in the transverse plane $z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\phi)$ Uncertainty on track polar angle θ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Significance of transverse IP $d_0/\sigma(d_0)$ Significance of longitudinal IP $s(z_0 \sin \theta)$ Significance of longitudinal IP times the sin of the polar angle $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(T)$ Number of pixel hitsNumber of SCT hitsPrRelative p_T of the electron with respect to the jet p_T The physical hitsThe physical hitsPrRelative p_T of the electron with respect to the jet		Jet mass	Scattering Neighbour Significance	Sum of the significances of the angular difference $\Delta \phi$ between pairs of adja-
q/p Track charge divided by reconstructed momentum p_T^{rel} Orthogonal projection of the mion p_T onto the jet axis $d\eta$ Pseudorapidity of track relative to the jet η d_0 Transverse IP: Closest distance from track to beam-line in the transverse plane d_0 Transverse IP: Closest distance from track to beam-line in the transverse plane p_0^{rel} Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track polar angle θ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(d_0)$ Significance of transverse IP $d_0/\sigma(d_0)$ Significance of longitudinal IP $s(z_0 \sin \theta)$ Significance of longitudinal IP times the sin of the polar angle $d_0/\sigma(d_0)$ Significance of longitudinal IP n_FT Relative p_T of the electron with respect to the jet p_T^r $ransverse IP$ p_T Relative p_T of the electron with respect to the jet	Track & charged UFO feature	Description	0 0	cent hits along the track, multiplied by the particle charge
$d\eta$ Pseudorapidity of track relative to the jet η p_1 Description $d\phi$ Azimuthal angle of the track, relative to the jet ϕ d_0 Transverse IP: Closest distance from track to be am-line in the transverse plane d_0 Transverse IP: Closest distance from track to PV in the longitudinal plane z_0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track polar angle θ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(d_0)$ Significance of transverse IP $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(a_0)$ Significance of pixel hitsNumber of pixel hitsSoft Electron InputDescriptionnSCTHitsNumber of SCT hitsNumber of SCT hits p_T Relative p_T of the electron with respect to the jet	q/p	Track charge divided by reconstructed momentum	$p_{\rm m}^{\rm rel}$	Orthogonal projection of the muon $p_{\rm T}$ onto the jet axis
$d\phi$ Azimuthal angle of the track, relative to the jet ϕ d_0 Transverse IP: Closest distance from track to beam line in the transverse plane d_0 Transverse IP: Closest distance from track to beam line in the transverse plane $plane$ $z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Significance of transverse IP $\sigma(d_0)$ Significance of longitudinal IP $s(d_0)$ Significance of longitudinal IP times the sin of the polar angle $z_0/\sigma(z_0)$ Significance of longitudinal IP $s(z_0 \sin \theta)$ Number of pixel hitsNumber of SCT hitsPrRelative p_T of the electron with respect to the jetWILLWILLWILLWILLPrRelative p_T of the electron with respect to the jet	$d\eta$	Pseudorapidity of track relative to the jet η	d_{2}	Transverse IP: Closest distance from track to beam-line in the transverse
a_0 Transverse IP: Closest distance from track to beam-line in the transverse plane z_0 in θ Longitudinal IP: Closest distance from track to PV in the longitudinal plane $z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\theta)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Significance of transverse IP $\sigma(d_0)$ Significance of transverse IP $s(d_0)$ Significance of longitudinal IP times the sin of the polar angle $z_0/\sigma(z_0)$ Significance of longitudinal IPNumber of pixel hitsNumber of pixel hitsSoft Electron InputDescriptionNumber of SCT hitsNumber of SCT hits p_T Relative p_T of the electron with respect to the jet	$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ		nlane
$z_0 \sin \theta$ Longitudinal IP: Closest distance from track to PV in the longitudinal plane z_0 Dongitudinal IP: Closest distance from track to PV in the longitudinal plane $\sigma(q/p)$ Uncertainty on q/p $\sigma(d_0)$ Uncertainty on measurement of transverse IP $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Significance of transverse IP $\sigma(d_0)$ Significance of transverse IP $s(d_0)$ Significance of longitudinal IP times the sin of the polar angle $d_0/\sigma(d_0)$ Significance of longitudinal IP $s(z_0 \sin \theta)$ Significance of longitudinal IP times the sin of the polar angle $Soft Electron Input$ DescriptionNumber of pixel hitsNumber of SCT hits p_T^r Relative p_T of the electron with respect to the jet	a_0	I ransverse IP: Closest distance from track to beam-line in the transverse plane	* -	Longitudinal IP: Closest distance from track to PV in the longitudinal plane
$\sigma(q/p)$ $O(d_1/p)$ $O(d_0)$ $O(d_0)$ $O(d_0)$ $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $\sigma(z_0)$ Uncertainty on measurement of longitudinal IP $\sigma(\phi)$ Uncertainty on track azimuthal angle ϕ $d_0/\sigma(d_0)$ Significance of transverse IP $s(d_0)$ Significance of longitudinal IP times the sin of the polar angle $d_0/\sigma(z_0)$ Significance of longitudinal IP $s(z_0 \sin \theta)$ Number of pixel hitsSoft Electron InputDescriptionNumber of SCT hitsRelative p_T of the electron with respect to the jetWhen the soft Physical	$z_0 \sin \theta$	Longitudinal IF: Closest distance from track to FV in the longitudinal plane Uncertainty on a/n	$z_0 = \sigma(d_z)$	Uncortainty on measurement of transverse IP
$ \begin{array}{c} \sigma(\sigma) & \text{Oncertainty on track point angle } \sigma(\sigma) & \text{Oncertainty on track azimuthal angle } \sigma(\sigma) & \text{Oncertainty on track azimuthal angle } \sigma(\sigma) & \text{Oncertainty on track azimuthal angle } \sigma(\sigma) & \text{Significance of transverse IP} \\ s(d_0) & \text{Significance of longitudinal IP times the sin of the polar angle} \\ nPixHits & \text{Number of pixel hits} & \text{Number of pixel hits} & \text{Number of SCT hits} & \text{Number of SCT hits} & \text{Number of SCT hits} & \text{Relative } p_{\rm T} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & \text{of the electron with respect to the jet} \\ \hline p_{\rm T}^{\rm r} & \text{Relative } p_{\rm T} & of the second seco$	$\sigma(q/p) = \sigma(\theta)$	Uncertainty on track polar angle θ	$\sigma(a_0)$	Uncertainty on measurement of longitudinal IP
$s(\phi)$ Significance of transverse IPSignificance of longitudinal IP times the sin of the polar angleSignificance of longitudinal IP $s(z_0 \sin \theta)$ Significance of longitudinal IP times the sin of the polar angleSoft Electron InputDescription n PixHitsNumber of SCT hitsRelative p_T of the electron with respect to the jetNumber of SCT hitsNumber of SUL hitsDescription	$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ	$d/\pi(d)$	Significance of transverse ID
$s(z_0 \sin \theta)$ Significance of longitudinal IP times the sin of the polar angle $nPixHits$ Number of pixel hits $nSCTHits$ Number of SCT hits Description p_T^r Relative p_T of the electron with respect to the jet	$s(d_0)$	Significance of transverse IP	$a_0/o(a_0)$	Significance of transverse if
nPixHitsNumber of pixel hitsnSCTHitsNumber of SCT hitsNumber of SCT hitsRelative $p_{\rm T}$ of the electron with respect to the jet	$s(z_0 \sin \theta)$	Significance of longitudinal IP times the sin of the polar angle	$z_0/\sigma(z_0)$	Significance of longitudinal IP
nSCTHits $p_{\rm T}^{\rm r}$ Relative $p_{\rm T}$ of the electron with respect to the jet	nPixHits	Number of pixel hits	Soft Electron Input	Description
	nSCTHits	Number of SCT hits	$p_{\mathrm{T}}^{\mathrm{r}}$	Relative $p_{\rm T}$ of the electron with respect to the jet
dR Angular separation between electron and jet axis	nIBLHits	Number of IBL hits	dR	Angular separation between electron and jet axis
nBLHits Number of B-layer hits $p_{\rm T}^{\rm iso}$ Isolation variable	nBLHits	Number of B-layer hits	$p_{\mathrm{T}}^{\mathrm{iso}}$	Isolation variable
nIBLShared Number of shared IBL hits Absolute value of pseudorapidity	nIBLShared	Number of shared IBL hits	$ \eta $	Absolute value of pseudorapidity
$\frac{\text{nIBLSplit}}{s(d_0)}$ Transverse IP: Closest distance from track to beam-line in the transverse	nIBLSplit	Number of split IBL hits	$s(d_0)$	Transverse IP: Closest distance from track to beam-line in the transverse
nPixShared Number of shared pixel hits	nPixShared	Number of shared pixel hits		plane
$\frac{1}{z(d_0)}$	nPixSplit	Number of split pixel hits	$z(d_0)$	Longitudinal IP: Closest distance from track to PV in the longitudinal plane
$\frac{1}{s(d_0/\sigma_d)}$	nSCTShared	Number of shared SCT hits	$s(d_0/\sigma_d)$	Significance of the transverse IP
$\frac{1}{\Delta \phi^{\text{res}}}$	LeptonID †	Information on if the track was used in lepton reconstruction	$\Delta \phi^{\rm res}$	The azimuthal angle difference $\Delta \phi$ between the cluster position in the middle
$\frac{-\varphi}{ aver and the track}$	Charged & neutral UFO feature	Description		laver and the track.
$p_{\rm T}^{\rm Flow}$ ‡ Transverse momentum of charged flow constituent E/p Batio of the cluster energy to the track momentum	$p_{\mathrm{T}}^{\mathrm{Flow}}$ ‡	Transverse momentum of charged flow constituent	E/n	Batio of the cluster energy to the track momentum
E_{Flow} the energy of charged flow constituent B_{L} and B_{L} and E_{T} in the hadronic calorimeter to E_{T} of the EM cluster	$E_{\rm Flow}$ ‡	Energy of charged flow constituent		Batio of E_{π} in the hadronic calorimeter to E_{π} of the EM cluster
$d\eta_{\rm Flow}$ ‡ Pseudorapidity of track relative to the large-R jet η A is still be a first layer of the hadronic calorimeter $R_{\rm Flow}$ = $R_{\rm Flow}$	$\mathrm{d}\eta_{\mathrm{Flow}}$ ‡	Pseudorapidity of track relative to the large-R jet η	R _{had}	Batio of transverse energy $E_{\rm T}$ in the first layer of the hadronic calorimeter
$d\phi_{\rm Flow}$ i Azimuthal angle of the track, relative to the large-R jet ϕ in the first layer of the matrice calorimeter to $E_{\rm T}$ of the EM cluster	$d\phi_{\rm Flow}$ 1	Azimuthal angle of the track, relative to the large-R jet ϕ	I thad I	to $E_{\rm m}$ of the EM cluster
dr_{Flow} = Angular distance of the track from the large- <i>R</i> jet direction E_{T} of the energy difference between the largest and second-largest energy	$ar_{\rm Flow}$ ‡	Angular distance of the track from the large-R jet direction	F_{-}	Batio of the energy difference between the largest and second-largest energy
\mathcal{L}_{ratio} function of the energy difference between the fargest and second-fargest energy			$\mathcal{L}_{\mathrm{ratio}}$	deposite in the cluster over the sum of these energies
Lateral shower width			au	I storal shower width
$w_{\eta 2}$ P P P P P P P P			$egin{array}{c} w_{\eta 2} \ B \end{array}$	Batic of the energy in 3×7 cells over the energy in 7×7 cells centered at
R_{η} Ratio of the energy in 5×7 certs over the energy in 7×7 certs centered a			n_η	Ratio of the energy in 5×7 cens over the energy in 7×7 cens centered at the electron electron position
f Detic of the energy in the strip leven to the total energy in the EM eccendic			£	Detic of the energy in the strip lower to the total energy in the EM accordion
J_1 Ratio of the energy in the strip layer to the total energy in the EM accordio			J_{1}	Ratio of the energy in the strip layer to the total energy in the EM accordion
			£	Catorimeter Datio of the energy in the head-law to the total successive the DM and the
J_3 Ratio of the energy in the back layer to the total energy in the EM accordio			J_3	Ratio of the energy in the back layer to the total energy in the EM accordion
Calorimeter				Calorimeter
$p_{\rm HF}$ Probability of being from neavy flavour decay			$p_{ m HF}$	Probability of being from neavy navour decay

Brendon Bullard

