Generative Graph Neural Networks for Reconstructing Parton-Level Jets after Hadronization

<u>Umar Sohail Qureshi</u> (uqureshi@cern.ch) Michael Taleb, Raghav (Rithya) Kunnawalkam Elayavalli

Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA

Machine Learning for Jet Physics, LPNHE, Paris, France

November 6, 2024

The Anatomy of a Hadron-Hadron Collision

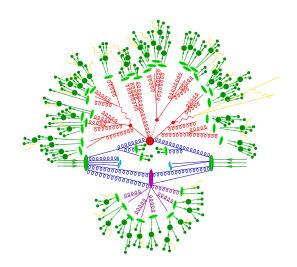


Figure 1: Schematic of a hadron-hadron collision. Image Credit: Stefan Hoche

Perturbative

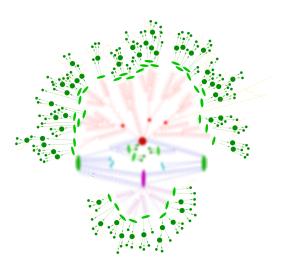
- High Q^2 scattering.
- Parton showering.

Possible because of factoring theorems!

Non-Perturbative

- Hadronization.
- Multi-parton interactions.
- Underlying events.

Hadronization Processes



Hadronization

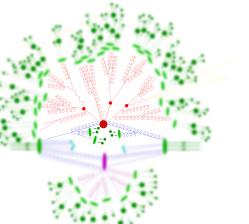
- Formation of hadrons from quarks and gluons.
- Incalculable using pQCD!

Phenomenological Models

- Parameterized fits to data.
- Intractable to recover partonic event analytically.

Figure 2: Schematic of a hadron-hadron collision. Image Credit: Stefan Hoche

Probing the Intrinsic Parton Shower



The Ultimate Goal

 Reconstruct the intrinsic (and immeasurable) parton shower from experimentally accessible quantities.

Predicting Parton-Level Jets

- We find the expected parton-level jet for a given hadron-level jet.
- Learn a mapping $f: \mathcal{H} \to \mathcal{P}$.

Figure 3: Schematic of a hadron-hadron collision. Image Credit: Stefan Hoche

Samples and Simulation

Event Generation (PYTHIA 8.312)

- pp beams with $\sqrt{s} = 14$ TeV.
- Photon-tagged events $qg \rightarrow q\gamma$.
- $\hat{p}_T > 1000 \text{ GeV}$.
- Anti- k_t R = 0.8 parton-level and hadron-level jets.
- Visible final-state particles.
- 800 < Jet p_{\perp} < 2000 GeV.
- 100K events to ensure sufficient statistics.

pythia.org/latest-manual/welcome.html

Graph Representation of Pythia Quark Jets

Jets represented as graphs, connected by ΔR :

Vertices :
$$\mathcal{J} = \left\{ \left(p_{\perp}^{i}, \eta^{i}, \phi^{i} \right)_{i=1}^{n} \right\}$$

Edges : $E = \left\{ \Delta R(i, j)_{i,j=1}^{n}, i \neq j \right\}$

Fully connected graphs, no self-loops.

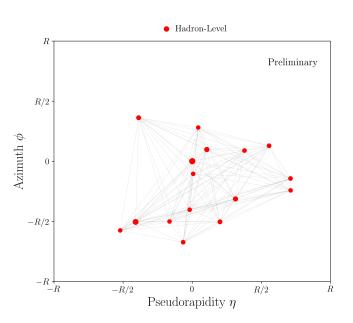
Preprocessing: Centering the Jets

• The (η, ϕ) coordinates of jet constituents are centered based on the jet (η, ϕ) using the E-scheme jet axis:

$$\overline{\eta} = rac{\displaystyle\sum_{i \in ext{jet}} \eta_i p_{T,i}}{\displaystyle\sum_{i \in ext{jet}} p_{T,i}}, \quad \overline{\phi} = rac{\displaystyle\sum_{i \in ext{jet}} \phi_i p_{T,i}}{\displaystyle\sum_{i \in ext{jet}} p_{T,i}}$$

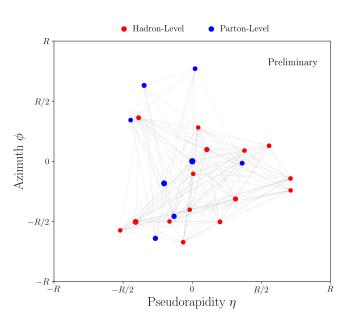
$$\eta_i \to \eta_i - \overline{\eta}, \quad \phi \to \phi_i - \overline{\phi}$$

Graph Representations of Quark Jets



- Pythia 8.312, $pp \sqrt{s} = 14 \text{ TeV}.$
- Anti- k_T , R = 0.8
- $800 < p_T < 2000 \text{ GeV}$.

Graph Representations of Quark Jets



- Pythia 8.312, $pp \sqrt{s} = 14 \text{ TeV}.$
- Anti- k_T , R = 0.8.
- $800 < p_T < 2000 \text{ GeV}$.

Machine Learning Model

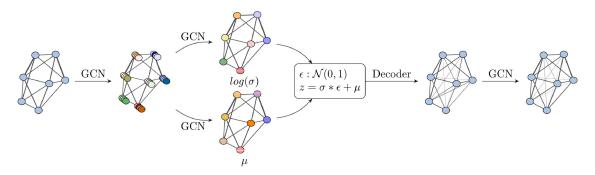


Image Credit: Tina Behrouzi et. al.

Variational Graph Autoencoder (VGAE)

- Input hadron-level jets \mathcal{H} .
- ullet Output parton-level jets ${\cal P}.$

- Encoder: learns an embedding (z, μ) for $\mathcal H$ in latent space.
- Decoder: learns reconstructing parton-level jets \mathcal{P} from embedding.

ML Model Training

Model Training

- Implemented using PyTorch-geometric.
- Trained using on an Nvidia A100.
- Train-validation split of 90%-10%.
- Adam optimizer, 3000 epochs.

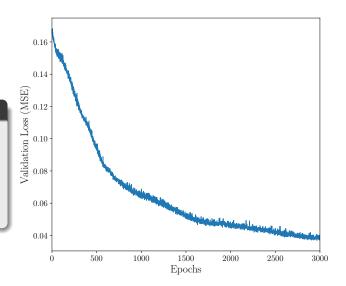


Figure 4: Validation loss over time.

Comparing Jets: The Energy Mover's Distance Metric

EMD Metric (PhysRevLett.123.041801)

- Quantifies the distance between two jets.
- The minimum "energy" required to rearrange a jet \mathcal{G} to \mathcal{G}' .

$$\mathcal{E}(\mathcal{G}, \mathcal{G}') = \min_{\{f_{ij} \geq 0\}} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} \left(\frac{\Delta R_{ij}}{R} \right) + \left| \sum_{i=1}^{M} E_i - \sum_{j=1}^{M'} E_j' \right|,$$

$$\sum_{j=1}^{M'} f_{ij} \leq E_i, \quad \sum_{i=1}^{M} f_{ij} \leq E_j', \quad \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} = E_{\min},$$

 $\mathcal{E}(\mathcal{P},\mathcal{P})$ gives a discrepancy measure between reconstructed graphs $\widehat{\mathcal{P}}$ and the ground truth \mathcal{P} .

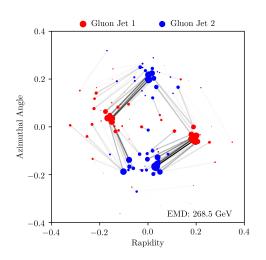
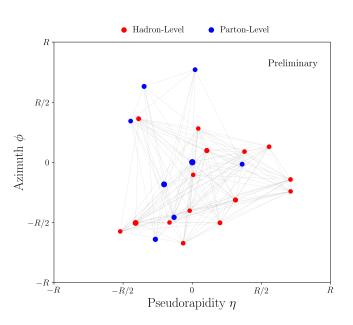


Figure 5: EMD between two gluon jets.

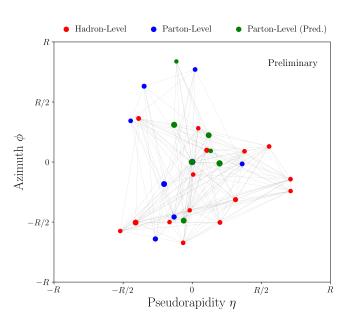
ML4Jets 2024

Results: Predictions on Unseen Data



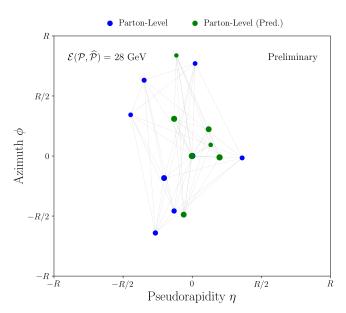
- Pythia 8.312, $pp \sqrt{s} = 14 \text{ TeV}.$
- Anti- k_T , R = 0.8.
- $800 < p_T < 2000 \text{ GeV}$.

Results: Predictions on Unseen Data



- Pythia 8.312, $pp \sqrt{s} = 14$ TeV.
- Anti- k_T , R = 0.8.
- $800 < p_T < 2000$ GeV.

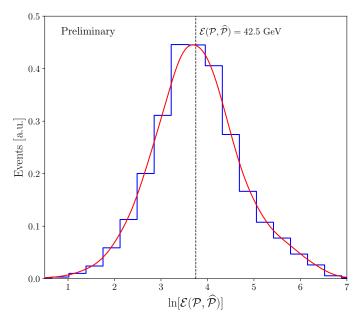
Results: Predictions on Unseen Data



Can compare predictions $\widehat{\mathcal{P}}$ with ground truth \mathcal{P} using EMD!

- Pythia 8.312, $pp \sqrt{s} = 14 \text{ TeV}.$
- Anti- k_T , R = 0.8.
- $800 < p_T < 2000 \text{ GeV}$.

Results: EMD Metric Distribution

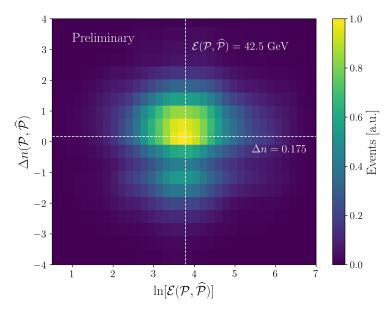


Predicted jets close to ground truth (Pythia)!

Benchmark EMDs:

- Good: $\ln \mathcal{E} \leq 4$
 - Jets are similar.
- Fair: $4 \le \ln \mathcal{E} \le 5.5$
 - Jets are fairly similar.
- Bad: $\ln \mathcal{E} \geq 5.5$
 - Jets are disparate.

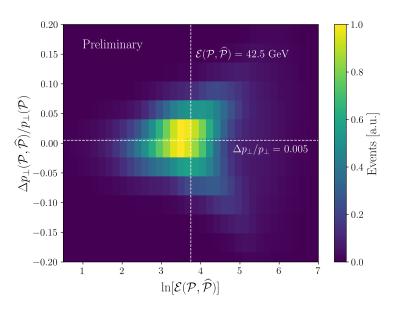
Results: Predictions for Parton Multiplicities



Correlation of EMD and the difference in prediction and ground truth parton multiplicities.

- Accurate prediction of multiplicities.
- Average particle multiplicity is \sim 22.
- Peak at $\Delta n = 0$.
- Almost all data: $|\Delta n| < 2$.

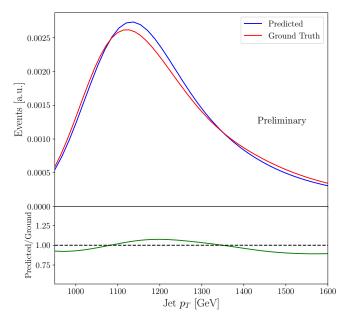
Results: Predictions for Parton Jet p_T



Correlation of EMD and the fractional difference in jet p_T .

- Accurate prediction of p_T.
- Peak at $\Delta p_T/p_T \approx 0$.
- Almost all data: $|\Delta p_T / p_T| < 0.1.$

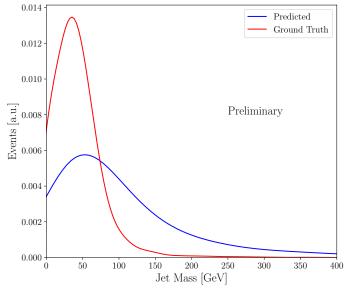
Results: Parton Jet p_T Spectra



Comparison of predicted and ground jet p_T spectra.

- Accurate prediction of p_T .
- Almost all data $\varepsilon < 0.1$.

Results: Parton Jet Mass Spectra



Comparison of predicted and ground jet mass spectra.

- Poor prediction of jet mass.
- Distribution is shifted and significantly more spread out.

Discussion and Conclusion

Summary

- We present a first look at using generative neural networks to reconstruct parton-level jets after hadronization.
- Our method captures the entire parton-level jet.
- Jury is still out on substructure observables.

Future Work

- Investigate the predictions for more jet substructure observables.
- Better ML models? Loss functions?
- Study the inclusion of detector effects, underlying events, and pileup.

Acknowledgements

- I thank Professor Rithya Kunnawalkam Elayavalli for their invaluable support and guidance.
- This work is supported in part by DOE Office of Science Award DE-SC0024660 and a Vanderbilt Immersion Grant.

Thank you! Questions?