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The High Granularity Calorimeter (HGCAL)

e To enhance the potential for discoveries at the
LHC, CERN plans to upgrade the accelerator
to the high luminosity LHC (HL-LHC) by
2029.

e At the end of LHC Phase 1 operations, the
end-cap calorimeters will have suffered
irrecoverable radiation damage.

The CMS collaboration is replacing its
endcap calorimeters with a new sampling

High Granularity Calorimeter.

The CMS detector and position of HGCAL
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The High Granularity Calorimeter (HGCAL)

Longitudinal cross section of the upper half of one of
the HGCAL (right), mixed silicon and scintillator
layers (top left) and a full silicon layer (bottom left).

First imaging calorimeter to be
implemented in high-energy physics.

Position, energy and timing information.

26 layers of electromagnetic section and
21 layers of hadronic section.

Designed for the HL-LHC target
integrated luminosity of 3000 fb'.
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Machine Learning in HGCAL

HGCAL : High granularity calorimeter
designed for Particle Flow (= combining
tracker and calorimeter information)

IChallenges:

® Environment from the high pile-up : number of]
interactions per bunch crossing will be
increased to 140-200.
e 6 million read-out channels and 5D
information from them.
Novel machine-leamig based algorithms Simulated event display of HGCAL at 200 pileup
to tackle these challenges!

But : execution time needs to be kept at the Hybrid approach : combining Machine Learning and
minimum (especially for software trigger) — traditional algorithms (highly optimized on GPUs)
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Reconstruction in HGCAL : TICL framework

TICL : The Iterative CLustering is a new framework 1s designed to fully exploit the high spatial

resolution and precise timing information provided by HGCAL

Rechits CLUE algorithm Layer clusters | cLuesp algorithm
Sensor readout Transverse section of a
O(1M) per event on GPU shower soon on GPU
O(100K) per event
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Reconstruction in H
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Particle identification

Aim : separate tracksters between hadrons and electron/photon
Electromagnetic objects are used to seed a dedicated electron track reconstruction

(Gaussian Sum Filter, time consuming)

= need to keep the number of electron seeds from HGCAL under control.

Different approaches developed in HGCAL

Classical approach

Compute high-level features :

e Energy fraction in hadronic
compartment

e [ongitudinal & transverse spread
of shower

Simple but limited performance

Layer cluster approach

Feed all layer clusters to a CNN or a
GNN:

e layer cluster position X,y,z

e layer cluster energy E

O(100) inputs per trackster

Good tradeoff between network
size and performance

Reconstructed hits approach

Feed all the raw detector hits to a
GNN :

e hit position x,),z

e hit energy £

O(10k) inputs per trackster
Time consuming

Lets the network learn about the
structure of a shower
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Particle identification using GNN

4 Graph neural network using edge _ _ T A
convolution and greedy clustering based AE-IE RN - § 8 »| 2
pooling (Dynamic reduction Network) SR EI S e 5
Input as point cloud, dynamically learns the - ;\;; N ®

\ graph structure # nodes reduction Y

Dataset : unconverted photons & early showering pions (10GeV-1TeV energy) with 200 pileup
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Good separation of pions versus photons.
Performance is better at lower n due to reduced pileup contamination of tracksters
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https://cds.cern.ch/record/2805638

Electron superclustering

An electron emits several bremsstrahlung photons whilst travelling through the tracker
= Several particles enter the calorimeter, spread in ¢ due to the magnetic field.
They need to be reconnected to the parent electron, to:

e seed tracker electron reconstruction

e collect all the electron energy, minimizing pileup contribution CMS Simulation Preliminary ___Phase-Ii
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Input: tracksters of the event

Output : superclusters = collection of tracksters o
representing a calorimeter electron with all its brem ‘
deposits ‘
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. . CMS Simulation Preliminary Phase-ll
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The Phase-1 algorithm uses solely n-¢ information for superclustering.

A new Deep Neural Network was developed using the imaging capabilities of HGCAL.
Inference is run on pairs of tracksters, using position and angular variables.
Superclusters are built iteratively, placing a threshold on the score.
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Electron superclustering performance

. ) CMS Simulation Preliminary Phase-lIl
Dataset : electrons in 200 pileup ol T T hudae
' INsced| €11.65,2.15] ]

0(Esc/Egen)
o
2

=N B

Supercluster energy is compared to the true i
Monte Carlo energy in the calorimeter. 0.08] ++
Energy resolution plots are obtained, ’
comparing the superclustering DNN to the
Moustache geometric algorithm.

0.06|- o
0.04}

002

[Nseea| €[2.15,2.75] ]

Moustache

SuperclusterDNN

The DNN shows improved resolution at low
energy and high n, thanks to pileup rejection.

—_
o
(=)

T T

o
]
[¢)]
T

0'DNN/O-mous

The Deep Neural Network allows for better energy resolution and pileup

rejection, allowing better reconstruction efficiency and lower energy thresholds
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Hadron energy regression

Energy regression of hadronic shower
using a Graph Neural Network. Trained
on simulation and tested on test beam
data (pion beam).
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Display of the input reconstructed hits to
the GNN.

Model architecture

Input features: (E, x, y, z) of rechits
Model target: E ./E

[ Repeat2times | Model output: Eq,.s/E;,
True” “fix

NN mapping Graph
Rechits ‘b( into latent cIusterIng& Output
space pooling ‘

where E;,.is the true energy of particle, E;, is reconstructed energy using detector level calibration and E,,.is the
energy reconstruction using DRN weights.
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Graph
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Arxiv : 2003.08013v1
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—> Significant resolution improvement.
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Future ML developments in HGCAL

Many more Machine Learning applications in HGCAL are possible. Current
directions include:

e Bringing most of the reconstruction on GPU, for increased speed (for
software trigger) and reduced hardware costs.

e Use of timing information for pileup rejection using ML : timing
measurements at a precision of 60 ps for a single hit (of enough energy), and
down to 20 ps for a full shower

e Use of the full set of reconstructed hits in Graph Neural Network
architectures.

e ML in Particle Flow : associating tracks to calorimeter tracksters, ambiguity
resolution...
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Conclusion

HGCAL is a high granularity calorimeter, designed for Particle Flow
reconstruction, combining calorimeter and tracker information.

Large pileup and 6M readout channels make reconstruction particularly
challenging, requiring a combination of classical and ML algorithms for computing
performance.

Variety of tasks where Machine Learning can be used : Particle Identification,
Electron Reconstruction, Energy Regression....

Machine learning will be a key ingredient
to the success of HGCAL reconstruction !
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