

Synergizing Physics

Deep Learning Techniques for Time-of-Flight Reconstruction and Jet **Tagging in High Energy Physics**

Konrad Helms

Georg-August-Universität Göttingen. Institut für Theoretische Physik

GEEÖRDERT VOM

Bundesministerium für Bildung und Forschung

Two Problems, One Solution

Two Problems

Jet Tagging

- classify sprays of particles, i.e. jets
- given a jet, infer whether it was quark or gluon initiated

Time-of-Flight (TOF) Regression

- given a shower in a calorimeter, infer TOF to the detector surface
- used for particle identification, example: ILD

One Solution

Q/G Jet Tagging

• binary classification task

Network Requirements

output: one number

Time-of-Flight Regression

• regression task

One Solution

Q/G Jet Tagging

- binary classification task
- data: jet, i.e. list of stable particles

Network Requirements

output: one number

input: tensor of variable length

Time-of-Flight Regression

- regression task
- data: shower in the calorimeter system, i.e. list of 5D hits

One Solution

Q/G Jet Tagging

- binary
 classification task
- data: jet, i.e. list of stable particles

Network Requirements

output: one number

input: tensor of variable length

• no natural ordering

permutation invariance

Time-of-Flight Regression

- regression task
- data: shower in the calorimeter system, i.e. list of 5D hits
- no ordering preserving shower evolution

 \Longrightarrow need permutation invariant network, relate points in a point cloud, predict one quantity

Q/G Jet Tagging

5th November 2024

• in the past:

classification based on hand crafted jet observables such as jet width, thrust, \ldots

- $\{jet\} \rightarrow \{list \ of \ observables\}$
- late 2010s/early 2020s:

point cloud-based approaches [arXiv:1902.08570, arXiv:2202.03772, ...], no hand crafted observables {jet}

- why not combine them?
 - $\{\mathsf{jet}\} \to \{\mathsf{jet}\} \oplus \{\mathsf{list of observables}\}$

point cloud \oplus fixed size tensor

Konrad Helms, Georg-August-Universität Göttingen

Time-of-Flight Regression

Hadronic Showers

- TOF estimation for hadron showers
 ⇒ particle identification
- for momenta $\lesssim \mathcal{O}(10 \text{ GeV})$: $\pi^{\pm} \text{ vs. } K^{\pm} \text{ vs. } p$
- particle identified by el. charge and

$$m = rac{p \cdot \mathsf{TOF}}{\ell_{\mathsf{track}}} \cdot \sqrt{1 - \left(rac{\ell_{\mathsf{track}}}{c \cdot \mathsf{TOF}}
ight)^2}$$

• for the TOF part of my talk: ILC @ 250 GeV & ILD

Calorimeter Data

Comparison to jet tagging:

- {jet} \oplus {list of observables}
- {shower} \oplus { ℓ_{track} , p, p_T, ...}
- network does (vague) PID internally
- predicts according to what it 'thinks' is the correct TOF
- solution:
- remove information that enables internal PID
- {shower} \oplus { ℓ_{track} , p, p_{T} , ...}

see my ML4Jets talk '23

Time-of-Flight Transformer

Time-of-Flight Regression Results

Summary

- two unrelated problems one problem solving mechanism
- important: same data structures
 - unordered point clouds
 - variable sized point clouds

Q/G Jet Tagging

- ensemble (CNN & Transformer) classification performance comparable to OmniLearn
- classification performance gain (w.r.t. class. based on multiplicity) in range 20-60, i.e. \sim 80% of the data

Time-of-Flight Regression

- TOF Transformer outperforms current ILD benchmark
 - ΔTOF distribution less biased
 - ΔTOF distribution narrower
- comparable TOF regression performance for all particle species
- prospect of resolving the K[±] double mass peaks

Thank you for your attention!

Georg-August-Universität Göttingen Institut für Theoretische Physik E-Mail: konrad.helms@theorie.physik.uni-goettingen.de

Backup

Hadron Shower Dataset

- training/validation/testing = 1.5/0.05/1 million showers
- ILC @ $\sqrt{s} = 250 \text{ GeV}$, ILD v02
- Whizard 2.8.5 generated processes:

$$e^+e^-
ightarrow Z
ightarrow qar q, \ e^+e^-
ightarrow W^+W^-
ightarrow 4q$$

- hadronization done using Pythia 6.4
- passage of particles through matter: Geant4 10.04

Benchmark Algorithm

- developed by Bohdan Dudar (DESY, University of Hamburg)
- consider only first 10 ECal layers
- focus on π^{\pm} vs. K^{\pm} vs. $\stackrel{(-)}{p}$
- cylindrical and temporal hit selection
- cyliner radius and temporal cut optimized on training data

$$\mathsf{TOF} = \frac{1}{N} \sum_{i=1}^{N} \left(t_i - \frac{d_{\mathsf{hit}\,i,\,\mathsf{ECal}}}{c} \right)$$

Kaon Mass Distribution

Konrad Helms, Georg-August-Universität Göttingen

Q/G Dataset #1

- 2 million q/g initiated jets
- generated with Pythia 8.226

•
$$Z(\rightarrow \nu \overline{\nu}) + (u, d, s), \ Z(\rightarrow \nu \overline{\nu}) + g$$

- $\sqrt{s} = 14 \, \mathrm{TeV}$
- clustering with anti- k_t algorithm, R = 0.4 in FastJet 3.3.0
- cuts: $p_{\text{T, jet}} \in [500, 550] \text{ GeV},$ $|\eta_{\text{jet}}| < 1.7$

Dataset: Komiske, Metodiev, Thaler, (2019), Pythia8 Quark and Gluon Jets for Energy Flow, available at Zenodo

Q/G Dataset #2

- training/validation/testing = 1.6/0.2/0.2 million jets
- used full PID information
- jet point-cloud:

$$\begin{aligned} J_k &= \{\vec{c}_1, \vec{c}_2, ..., \vec{c}_{N_k}\} \text{ with } \\ \vec{c}_i &= (p_{\mathsf{T}}, \eta, \phi, \mathsf{PID})_i \end{aligned}$$

• particle multiplicity folded into many jet observables, for example

$$p_{\mathsf{T}} D = \frac{\sqrt{\sum_{i \in jet} p_{\mathsf{T},i}^2}}{\sum_{i \in jet} p_{\mathsf{T},i}}$$

Q/G Benchmark CNN & Ensemble

- CNN serves as a benchmark
- same input as Jet Transformer
- need to order the jet point cloud
 - \implies use (approximate) roatation invariance around jet axis
- locality bias
- spatial hierarchy
- ensemble of Jet Transformer and benchmark CNN

- ensemble weights optimized on validation dataset
- w_{best} = 0.69
- w · (Transformer class pred.)+ (1 − w) · (CNN class pred.)

Classification Metrics

•
$$\operatorname{Rej}_{X\%} = \frac{1}{\operatorname{FPR}}$$
 at $\operatorname{TPR} = X\%$

Classifier	Acc. [%]	TPR [%]	FPR [%]	TNR [%]	FNR [%]
Based on multiplicity	76.61	72.74	19.50	80.50	27.26
Transformer	83.91	81.47	13.64	86.36	18.53
Benchmark CNN	82.75	80.35	14.83	85.17	19.65
Ensemble	84.11	81.37	13.14	86.86	18.63

- positive class = quarks
- negative class = gluons

