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ML IN PARTICLE PHYSICS

 ML is use for a large range of tasks

 Jet classification

 Tendency to move from VAE and GNN towards transformers

 Dominant architecture in AI research: more papers, more fundamental research

 Need a lot of data, but data, measured or generated, is available in HEP

 Increasing interest about pre-trained models: LLM for physics

 A large model, pre-trained on a large dataset (unsupervisedly, usually)

 Fine-tuned on many related tasks



ML FOR PARTICLE PHYSICS

 In most of these applications ML models “compute”: they process numbers, and output numbers 

 This is not what transformers were designed for

 Natural language processing mostly deals with discrete symbols (words in a language)

 LLM are bad at computing: 

 Integer addition can only be performed using “tricks”: scratchpad, special positional encodings

 Integer multiplication only works so long one operand is small

 Combinations of these tasks, negative numbers, are a mess



AI FOR SYMBOLIC MATHEMATICS (AND PHYSICS?)

 Dealing with functions, graphs, equations, symbolic mathematical objects

 Symbolic regression: discovering laws from data (numerical input symbolic output)

 Solving symbolic equations

 Finding counter examples

 Traditionally associated with reinforcement learning (AlphaGo) and genetic programming

 Transformers play an increasing role



FINDING COUNTER-EXAMPLES IN GRAPH THEORY 

Constructions in combinatorics via neural networks, Wagner 2021, 2104.14516

Conjecture (Aouchiche-Hansen 2011): Let G be a connected graph, with n ≥ 4 vertices,  diameter (max distance between 
vertices) D, proximity (average distance between nodes) 𝜋 and spectral distance (eigenvalues of distance matrix) ∂1 ≥ ∂2 ≥  ... ≥ 
∂n , 

Then   𝜋 + 𝜕
2𝐷

3
> 0

Train a model to find counter-examples, it fails, but all failed 
solutions follow a certain pattern

That a mathematician can turn into a valid counter-example 



DISCOVERING OPTIMAL CONSTRUCTIONS 
PatternBoost: constructions in mathematics with a little help from AI

Charton, Ellenberg,  Wagner, Williamson 2024, 2411.00566

 Finding discrete objects that maximize a quantity:

 Largest graphs with n nodes, but no cycle of 4

 Largest set of points on a n3 grid, with no 5 points on a sphere

 Smallest subset of the d-dimensional hypercube, with diameter d 

 Generate random solutions, make them as good as you can with local search, keep the best candidates

 Train a transformer (GPT-2) on the best candidates

 Tokenized by their adjacency matrix, using Byte Pair Encoding: standard NLP tools

 Use it to generate more candidates

 Improve them with local search

 Rinse, repeat...



DISCOVERING OPTIMAL CONSTRUCTIONS

 This works!

 Competitive on hard problems, like no square graphs

 Found hitherto unknown no-sphere solutions for n=6 (best known was 17, we found 18)

 Solved a 30 years-old conjecture about d-hypercubes with diameter d

 Also, FunSearch (DeepMind 2023): use an LLM to create programs to find solutions to combinatorial problems

 Cap Set problem: largest subset in ℤ »
𝑛with no three points on a line

 FunSearch discovered new optimal solutions



PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS
Global Lyapunov functions : a long-standing open problem in mathematics, with symbolic 

transformers,  Alfarano, Hayat, Charton, 2024, 2410.08304

 Dynamical systems: ሶ𝑥 = 𝑓 𝑥 , 𝑥 ∈ ℝ𝑛, 𝑓 ∈ 𝐶1(ℝ𝑛)

 Global stability: if we start close to an equilibrium, do we always stay close, or can we diverge to infinity

 Stability of the solar system, 3-body problem

 Lyapunov (1892) it is if you can find 𝑉 ∈ 𝐶1 ℝ𝑛, ℝ , such that for all 𝑥 ∈ ℝ𝑛,  

𝑉 𝑥 > 𝑉 0
lim
𝑥 →+∞

𝑉(𝑥) = +∞

∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0

 How to findV? An open problem except in the simplest cases



PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS

 We train a transformer, on generated examples of problems and solutions, to discover Lyapunov functions

 Generating random solutions, and associated problems

 Symbolic input, symbolic output (functions)

 Beats the state of the art on polynomial systems

 Discovers Lyapunov functions for random systems for which no method is known



SYMBOLIC AI FOR SCATTERING AMPLITUDES
Transforming the bootstrap: using transformers to compute scattering amplitudes in planar n=4 super Yang-Mills 

theory, Cai, Merz, Charton, Nolte, Wilhelm, Cranmer, Dixon, 2024, 2405:06107

 Scattering amplitudes: complex functions describing particle interactions

 Their squared module are probabilities of outcomes

 Baselines for experiments, need to be computed to high precision

 Computed by summing Feynman diagrams of increasing complexity

 measured in loops: virtual particles created and destroyed in the process, correspond to loops in the Feynman diagrams

 One more loop: x10 in precision



AI FOR SCATTERING AMPLITUDES

 A hard problem

 Each loop introduces two latent variables, their integration give rise to generalized polylogarithms

 Best precision at present: loop 3 for some interactions

 Theoretical research on integration by part:  aka computational tricks

 Some ML results: Simplifying polylogarithms with machine learning, Dersy, Schwartz, Zhang, 2022, 2206.04115



BOOTSTRAPPED AMPLITUDES 

 Leverage algebraic properties of polylogarithms to predict the structure of the solution

 Up to a (large) number of integer coefficients

 That can be computed from symmetry, integrability, limit conditions

 In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”

 Symbols: homogeneous polynomials of degree 2L (L=loop), over ℤ

 Can be computed to high loops: 3 gluons form-factor to 8 loops

Bootstrapping a stress-tensor form factor through eight loops, Dixon, Gurdogan, McLeod, Wilhelm, 2022, 2204.11901



THE THREE GLUON FORM FACTOR

 3 gluons and a Higgs-like “operator”

 Symbols are polynomials in 6 (non commutative) variables 

a,b,c,d,e,f

 Loop 3: -4 bccaff + 4 bcbaff + 8 bcafff + ...

 For loop L, 62L possible keys (ordered sequences of 2L letters) 

mapped onto integers

 Most of them zero

 We want to understand the mapping



THE SIX LETTER GAME

 Coefficients are invariant by the dihedral symmetry: generated by (a,b,c), (d,e,f), (a,b), (d,e)

 Adjacencies: non-zero keys must

 Begin with a,b, or c

 End with d,e,or f

 Not have adjacent a and d, b and e, c and f, d and e, d and f, e and f

 Relations exist between identical keys up to a few letters (Fa,b is the coefficient of a key with a and b adjacent)



TRANSFORMERS FOR BOOTSTRAP

 Many other regularities exist, could a language model find them?

 Train a transformer to predict coefficients (sequences of digits in base 1000) from their keys (sequences of 2L 

letters)

 Small encoder–decoder model, trained on a fraction of a loop data, tested on its prediction of the rest

 Minimising cross-entropy, a “letter game”



EXPERIMENT 1: PREDICTING ZEROES

 Given an key, predict whether the coefficient is different from zero

 A 50/50 sample of zero and non-zero keys

 Loop 5 : after training on 300,000 examples (57% of the non-zero keys and as many zero keys), the model predict 

99.96% of test examples (not seen during training)

 Loop 6 : after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples



EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

 From keys, sequences of 2L letters, predict 
coefficients, integers encoded in base 1000

 For loop 5, models trained on 164k 
examples (62% of the symbol), tested on 
100k

 99.9% accuracy after 58 epochs of 300k examples

 For loop 6, models trained on 1M examples 
(20% of the symbol), tested on 100k

 98% accuracy after 120 epochs

 BUT a two step learning curve



EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

 Full prediction, magnitude and sign

 The absolute value is easy to predict, the sign is not



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Symbols satisfy a dihedral symmetry: 6 copies of each element

 Only a few endings are possible

 8 quads (suffixes of length 4)

 93 octuples (suffixes of length 8)

 A more compact representation for higher loops, and a harder problem, because the easiest regularities have 

been removed from the training data



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Quads at loop 7: 7.3 non zero elements in the 

symbols (vs 93 million ins the full representation)

 The model learns just as well

 Same two-step shape

 The model is not “just learning” the obvious 

regularities 



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Octuples at loop 8: 5.6 non zero elements, vs 1.7 

billion)

 94% accuracy

 Smoothed two step shape

 Slower learning (600 epochs, vs 200 for quads, and 70 

for full representation)



TAKE AWAYS FROM EXPERIMENTS 1 - 3

 Transformers can complete partially calculated loops

 Coefficients are learned with high accuracy

 Even when a small part of the symbol is available

 A few unintuitive observations 

 Hardness of learning the sign

 May shed light on the underlying phenomenon



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Find a recurrence relation connecting coefficients from loop L-1, to coefficients from loop L

 A loop L key has 2L letters, we can associate it to loop L-1 “parents”, by striking out two letters

 The parents of K=aabd are aabd = bd , aabd= ad, aabd = ab, ...

 Call them P(K), there are L(2L-1) such parents

 Find a generalized recurrence linking the coefficient of K to it parents: E = f(P(K))

 A generalized Pascal triangle/pyramid (in 6 non-commutative variables)



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Predict loop 6 from loop 5:

 From 66 integers: loop 5 coefficients

 Predict 1 integer: the loop 6 coefficient

 (NOT the keys: we already know the model can predict coefficients from keys)

 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy

 A function f certainly exists (but do not know what it is)



EXPERIMENT 4: LEARNING THE NEXT LOOP

 We can learn about the unknown recurrence, by removing parents:

 Only considering strike-outs of contiguous (or close apart) positions

 k max distance for strike out : k=1 contiguous letters only,  the smaller k; the less parents

 Limited impact on performance for k larger than 1



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Shuffling/sorting parents have little impact: the recurrence is almost permutation invariant

 Coupling between parent and child signs, and magnitudes



THE SIX LETTER GAME REVISITED

 Since zeros are so easy to predict, there must be a general rule for adjacent zero keys

 Generalized end-rule: keys ending with a single letter d, e or f must be preceded with a run of a, b or c

 * aaaaf can be non zero

 * abbaf must be zero

 Accounts for 92% of adjacent zeroes



THE SIX LETTER GAME REVISITED

 Since models can find relations between elements and their strike out parents exist, we could go looking for such 

empirical relations

 Rays: sequences of keys of different loops, related by a “common strikeout pattern”, 

 af, aaaf, aaaaaf, ..., or af, afff, afffff, ...

 Closed recurrences can be found, coefficients of sequences ending with a variable length run of f verify 

 With



NEXT STEPS 

 Try build loop 9, or loops for related problems

 Discover new properties of the symbol

 Symbols were calculated by exploiting known symmetries

 If we discover new regularities in the symbols, do we discover new symmetries?

 Train a language model on all loop data, and investigate its representations
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