SYMBOLIC MACHINE LEARNING IN PHYSICS

FRANÇOIS CHARTON, FAIR, META – ÉCOLE DES PONTS

ML IN PARTICLE PHYSICS

- ML is use for a large range of tasks
 - Jet classification
- Tendency to move from VAE and GNN towards transformers
 - Dominant architecture in AI research: more papers, more fundamental research
 - Need a lot of data, but data, measured or generated, is available in HEP
- Increasing interest about pre-trained models: LLM for physics
 - A large model, pre-trained on a large dataset (unsupervisedly, usually)
 - Fine-tuned on many related tasks

ML FOR PARTICLE PHYSICS

- In most of these applications ML models "compute": they process numbers, and output numbers
- This is not what transformers were designed for
 - Natural language processing mostly deals with discrete symbols (words in a language)
 - LLM are bad at computing:
 - Integer addition can only be performed using "tricks": scratchpad, special positional encodings
 - Integer multiplication only works so long one operand is small
 - Combinations of these tasks, negative numbers, are a mess

AI FOR SYMBOLIC MATHEMATICS (AND PHYSICS?)

- Dealing with functions, graphs, equations, symbolic mathematical objects
 - Symbolic regression: discovering laws from data (numerical input symbolic output)
 - Solving symbolic equations
 - Finding counter examples
- Traditionally associated with reinforcement learning (AlphaGo) and genetic programming
- Transformers play an increasing role

FINDING COUNTER-EXAMPLES IN GRAPH THEORY

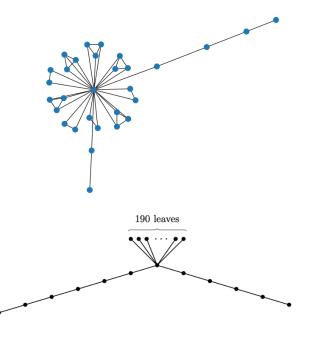
Constructions in combinatorics via neural networks, Wagner 2021, 2104.14516

Conjecture (Aouchiche-Hansen 2011): Let G be a connected graph, with $n \ge 4$ vertices, diameter (max distance between vertices) D, proximity (average distance between nodes) π and spectral distance (eigenvalues of distance matrix) $\partial_1 \ge \partial_2 \ge ... \ge \partial_n$,

Then $\pi + \partial \left[\frac{2D}{3}\right] > 0$

Train a model to find counter-examples, it fails, but all failed solutions follow a certain pattern

That a mathematician can turn into a valid counter-example



DISCOVERING OPTIMAL CONSTRUCTIONS

PatternBoost: constructions in mathematics with a little help from AI Charton, Ellenberg, Wagner, Williamson 2024, 2411.00566

- Finding discrete objects that maximize a quantity:
 - Largest graphs with n nodes, but no cycle of 4
 - Largest set of points on a n³ grid, with no 5 points on a sphere
 - Smallest subset of the d-dimensional hypercube, with diameter d
- Generate random solutions, make them as good as you can with local search, keep the best candidates
- Train a transformer (GPT-2) on the best candidates
 - Tokenized by their adjacency matrix, using Byte Pair Encoding: standard NLP tools
- Use it to generate more candidates
- Improve them with local search
- Rinse, repeat...

DISCOVERING OPTIMAL CONSTRUCTIONS

- This works!
- Competitive on hard problems, like no square graphs
- Found hitherto unknown no-sphere solutions for n=6 (best known was 17, we found 18)
- Solved a 30 years-old conjecture about d-hypercubes with diameter d
- Also, FunSearch (DeepMind 2023): use an LLM to create programs to find solutions to combinatorial problems
 - Cap Set problem: largest subset in \mathbb{Z}^n_{*} with no three points on a line
 - FunSearch discovered new optimal solutions

PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS

Global Lyapunov functions : a long-standing open problem in mathematics, with symbolic transformers, Alfarano, Hayat, Charton, 2024, 2410.08304

- Dynamical systems: $\dot{x} = f(x)$, $x \in \mathbb{R}^n$, $f \in C^1(\mathbb{R}^n)$
- Global stability: if we start close to an equilibrium, do we always stay close, or can we diverge to infinity
 - Stability of the solar system, 3-body problem
- Lyapunov (1892) it is if you can find $V \in C^1(\mathbb{R}^n, \mathbb{R})$, such that for all $x \in \mathbb{R}^n$, V(x) > V(0) $\lim_{|x| \to +\infty} V(x) = +\infty$ $\nabla V(x) \cdot f(x) \le 0$
- How to find V? An open problem except in the simplest cases

PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS

- We train a transformer, on generated examples of problems and solutions, to discover Lyapunov functions
 - Generating random solutions, and associated problems
 - Symbolic input, symbolic output (functions)
- Beats the state of the art on polynomial systems

	SOSTOOL	Existing AI methods			Models			
Test sets	findlyap	Fossil 2	ANLC	LyzNet	PolyMixture	FBarr	FLyap	BPoly
FSOSTOOLS	-	32	30	46	84	80	53	54
FBarr	-	12	18	28	93	-	28	35
FLyap	-	42	32	66	84	93	-	73
BPoly	15	10	6	24	99	15	10	-

Table 5: Performance comparison on different test sets. Beam size 50. PolyMixture is BPoly + 500 FBarr.

Discovers Lyapunov functions for random systems for which no method is known

	Sample	SOSTOOL	Existing AI methods			Forward model	Backward model	
Test set	size	findlyap	Fossil 2	ANLC	LyzNet	FBarr	PolyMixture	NonPolyMixture
Poly3	65,215	1.1	0.9	0.6	4.3	11.7	11.8	11.2
Poly5	60,412	0.7	0.3	0.2	2.1	8.0	10.1	9.9
NonPoly	19,746	-	1.0	0.6	3.5	-	-	12.7

Table 6: Discovering Lyapunov comparison for random systems.Beam size 50. PolyMixture is BPoly +500 FBarr.NonPolyMixture is BNonPoly + BPoly + 500 FBarr.

SYMBOLIC AI FOR SCATTERING AMPLITUDES

Transforming the bootstrap: using transformers to compute scattering amplitudes in planar n=4 super Yang-Mills theory, Cai, Merz, Charton, Nolte, Wilhelm, Cranmer, Dixon, 2024, 2405:06107

- Scattering amplitudes: complex functions describing particle interactions
 - Their squared module are probabilities of outcomes
 - Baselines for experiments, need to be computed to high precision
- Computed by summing Feynman diagrams of increasing complexity
 - measured in loops: virtual particles created and destroyed in the process, correspond to loops in the Feynman diagrams
 - One more loop: x10 in precision

AI FOR SCATTERING AMPLITUDES

- A hard problem
- Each loop introduces two latent variables, their integration give rise to generalized polylogarithms
- Best precision at present: loop 3 for some interactions
- Theoretical research on integration by part: aka computational tricks
- Some ML results: Simplifying polylogarithms with machine learning, Dersy, Schwartz, Zhang, 2022, 2206.04115

BOOTSTRAPPED AMPLITUDES

- Leverage algebraic properties of polylogarithms to predict the structure of the solution
 - Up to a (large) number of integer coefficients
 - That can be computed from symmetry, integrability, limit conditions
- In Planar N=4 supersymmetric Yang-Mills, solutions are "simple"
 - Symbols: homogeneous polynomials of degree 2L (L=loop), over Z
 - Can be computed to high loops: 3 gluons form-factor to 8 loops

Bootstrapping a stress-tensor form factor through eight loops, Dixon, Gurdogan, McLeod, Wilhelm, 2022, 2204.11901

THE THREE GLUON FORM FACTOR

- 3 gluons and a Higgs-like "operator"
- Symbols are polynomials in 6 (non commutative) variables a,b,c,d,e,f
 - Loop 3: -4 bccaff + 4 bcbaff + 8 bcafff + ...
- For loop L, 6^{2L} possible keys (ordered sequences of 2L letters) mapped onto integers
 - Most of them zero
 - We want to understand the mapping

L	number of terms
1	6
2	12
3	636
4	11,208
5	$263,\!880$
6	$4,\!916,\!466$
7	$92,\!954,\!568$
8	$1,\!671,\!656,\!292$

TABLE II. Number of terms in the symbol of $F_3^{(L)}$ as a function of the loop order L.

THE SIX LETTER GAME

- Coefficients are invariant by the dihedral symmetry: generated by (a,b,c), (d,e,f), (a,b), (d,e)
- Adjacencies: non-zero keys must
 - Begin with a,b, or c
 - End with d,e,or f
 - Not have adjacent a and d, b and e, c and f, d and e, d and f, e and f
- Relations exist between identical keys up to a few letters (F^{a,b} is the coefficient of a key with a and b adjacent)

$$\begin{aligned} F^{a,b} + F^{a,c} - F^{b,a} - F^{c,a} &= 0, \end{aligned} \tag{3.6} \\ F^{c,a} + F^{c,b} - F^{a,c} - F^{b,c} &= 0, \end{aligned} \\ F^{d,b} - F^{d,c} - F^{b,d} + F^{c,d} + F^{e,c} - F^{e,a} - F^{c,e} + F^{a,e} + F^{f,a} - F^{f,b} - F^{a,f} + F^{b,f} \\ &+ 4(F^{c,b} - F^{b,c}) = 0, \end{aligned} \tag{3.8}$$

TRANSFORMERS FOR BOOTSTRAP

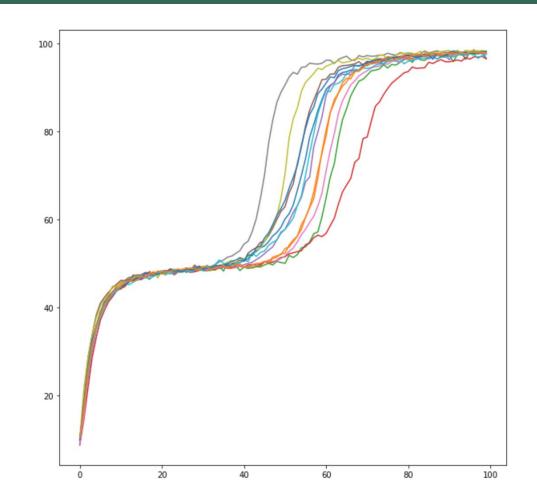
- Many other regularities exist, could a language model find them?
- Train a transformer to predict coefficients (sequences of digits in base 1000) from their keys (sequences of 2L letters)
- Small encoder-decoder model, trained on a fraction of a loop data, tested on its prediction of the rest
 - Minimising cross-entropy, a "letter game"

EXPERIMENT I: PREDICTING ZEROES

- Given an key, predict whether the coefficient is different from zero
- A 50/50 sample of zero and non-zero keys
- Loop 5 : after training on 300,000 examples (57% of the non-zero keys and as many zero keys), the model predict 99.96% of test examples (not seen during training)
- Loop 6 : after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples

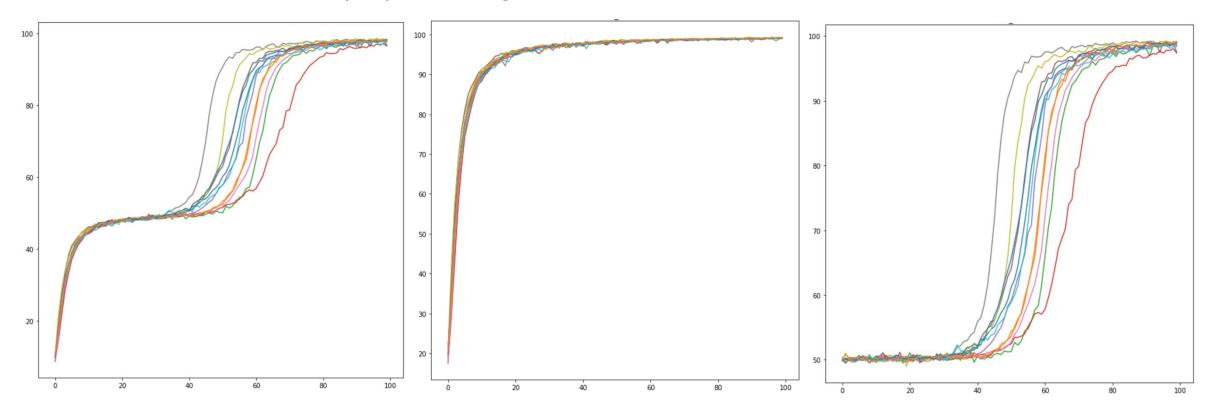
EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

- From keys, sequences of 2L letters, predict coefficients, integers encoded in base 1000
- For loop 5, models trained on 164k examples (62% of the symbol), tested on 100k
 - 99.9% accuracy after 58 epochs of 300k examples
- For loop 6, models trained on IM examples (20% of the symbol), tested on 100k
 - 98% accuracy after 120 epochs
 - BUT a two step learning curve



EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

- Full prediction, magnitude and sign
 - The absolute value is easy to predict, the sign is not

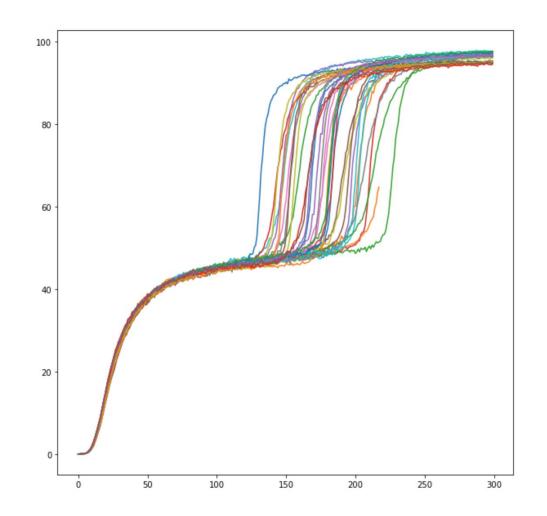


EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

- Symbols satisfy a dihedral symmetry: 6 copies of each element
- Only a few endings are possible
 - 8 quads (suffixes of length 4)
 - 93 octuples (suffixes of length 8)
- A more compact representation for higher loops, and a harder problem, because the easiest regularities have been removed from the training data

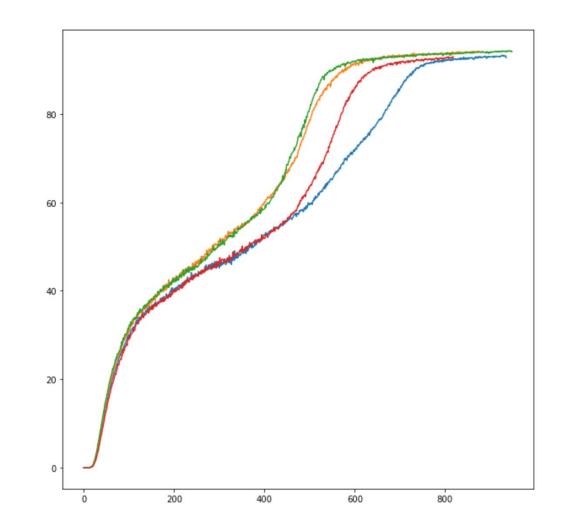
EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

- Quads at loop 7: 7.3 non zero elements in the symbols (vs 93 million ins the full representation)
- The model learns just as well
- Same two-step shape
- The model is not "just learning" the obvious regularities



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

- Octuples at loop 8: 5.6 non zero elements, vs 1.7 billion)
- 94% accuracy
- Smoothed two step shape
- Slower learning (600 epochs, vs 200 for quads, and 70 for full representation)



TAKE AWAYS FROM EXPERIMENTS I - 3

- Transformers can complete partially calculated loops
- Coefficients are learned with high accuracy
 - Even when a small part of the symbol is available
- A few unintuitive observations
 - Hardness of learning the sign
 - May shed light on the underlying phenomenon

- Find a recurrence relation connecting coefficients from loop L-I, to coefficients from loop L
- A loop L key has 2L letters, we can associate it to loop L-I "parents", by striking out two letters
 - The parents of K=aabd are aabd = bd, aabd = ad, aabd = ab, ...
 - Call them P(K), there are L(2L-1) such parents
- Find a generalized recurrence linking the coefficient of K to it parents: E = f(P(K))
 - A generalized Pascal triangle/pyramid (in 6 non-commutative variables)

- Predict loop 6 from loop 5:
 - From 66 integers: loop 5 coefficients
 - Predict I integer: the loop 6 coefficient
 - (NOT the keys: we already know the model can predict coefficients from keys)
- 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
- A function f certainly exists (but do not know what it is)

- We can learn about the unknown recurrence, by removing parents:
 - Only considering strike-outs of contiguous (or close apart) positions
 - k max distance for strike out : k=1 contiguous letters only, the smaller k; the less parents
 - Limited impact on performance for k larger than I

	Accuracy	Magnitude accuracy	Sign accuracy
Strike two, all parents	98.1	98.4	99.6
Strike two, $k=5$	98.3	98.6	99.7
Strike two, k=3	98.4	98.7	99.7
Strike two, k=2	98.1	98.3	99.5
Strike two, k=1	94.3	95.2	98.5

- Shuffling/sorting parents have little impact: the recurrence is almost permutation invariant
- Coupling between parent and child signs, and magnitudes

	Accuracy	Magnitude accuracy	Sign accuracy
Strike two, all parents	98.1	98.4	99.6
Strike two, $k=5$	98.3	98.6	99.7
Strike two, k=3	98.4	98.7	99.7
Strike two, k=2	98.1	98.3	99.5
Strike two, k=1	94.3	95.2	98.5
Shuffled parents	95.2	99.1	96.3
Shuffled parents, k=2	93.5	98.1	95.0
Sorted parents, k=5	93.9	95.4	97.9
Parent signs only	93.3	93.5	99.0
Parent magnitudes only	81.8	98.4	83.2

Table 2: Global, magnitude and sign accuracy. Best of four models, trained for about 500 epochs

THE SIX LETTER GAME REVISITED

- Since zeros are so easy to predict, there must be a general rule for adjacent zero keys
- Generalized end-rule: keys ending with a single letter d, e or f must be preceded with a run of a, b or c
 - * aaaaf can be non zero
 - * abbaf must be zero
 - Accounts for 92% of adjacent zeroes

THE SIX LETTER GAME REVISITED

- Since models can find relations between elements and their strike out parents exist, we could go looking for such empirical relations
 - Rays: sequences of keys of different loops, related by a "common strikeout pattern",
 - af, aaaf, aaaaaf, ..., or af, afff, afffff, ...
 - Closed recurrences can be found, coefficients of sequences ending with a variable length run of f verify

$$c_L(\operatorname{seq}_7 \mathbf{f} \dots \mathbf{f}) = p_L(\operatorname{seq}_7) \times (-1)^L 2^{2L-8} (2L-9)!!,$$
 (5.5)

With

 $p_L(aaf...f) = 0,$ (5.6)

$$p_L(\text{caaf}\dots f) = 32(L-2)(2L-5)(2L-7),$$
 (5.7)

$$p_L(\text{caaaf}\dots f) = \frac{16}{3}(4L-9)(2L-5)(2L-7),$$
 (5.8)

$$p_L(\text{ccaaaaf}\dots f) = -\frac{4}{5}(2L-7)(7L^2+22L-140),$$
 (5.9)

$$p_L(\texttt{cccccaaf}\dots\texttt{f}) = -\frac{8}{3}(L-4)(L^2-47L+135),$$
 (5.10)

$$p_L(\texttt{bdddbbbf}\dots\texttt{f}) = -\frac{2}{45}(163L^3 - 2220L^2 + 15977L - 36660).$$
 (5.11)

NEXT STEPS

- Try build loop 9, or loops for related problems
- Discover new properties of the symbol
 - Symbols were calculated by exploiting known symmetries
 - If we discover new regularities in the symbols, do we discover new symmetries?
- Train a language model on all loop data, and investigate its representations