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ML IN PARTICLE PHYSICS

 ML is use for a large range of tasks

 Jet classification

 Tendency to move from VAE and GNN towards transformers

 Dominant architecture in AI research: more papers, more fundamental research

 Need a lot of data, but data, measured or generated, is available in HEP

 Increasing interest about pre-trained models: LLM for physics

 A large model, pre-trained on a large dataset (unsupervisedly, usually)

 Fine-tuned on many related tasks



ML FOR PARTICLE PHYSICS

 In most of these applications ML models “compute”: they process numbers, and output numbers 

 This is not what transformers were designed for

 Natural language processing mostly deals with discrete symbols (words in a language)

 LLM are bad at computing: 

 Integer addition can only be performed using “tricks”: scratchpad, special positional encodings

 Integer multiplication only works so long one operand is small

 Combinations of these tasks, negative numbers, are a mess



AI FOR SYMBOLIC MATHEMATICS (AND PHYSICS?)

 Dealing with functions, graphs, equations, symbolic mathematical objects

 Symbolic regression: discovering laws from data (numerical input symbolic output)

 Solving symbolic equations

 Finding counter examples

 Traditionally associated with reinforcement learning (AlphaGo) and genetic programming

 Transformers play an increasing role



FINDING COUNTER-EXAMPLES IN GRAPH THEORY 

Constructions in combinatorics via neural networks, Wagner 2021, 2104.14516

Conjecture (Aouchiche-Hansen 2011): Let G be a connected graph, with n ≥ 4 vertices,  diameter (max distance between 
vertices) D, proximity (average distance between nodes) 𝜋 and spectral distance (eigenvalues of distance matrix) ∂1 ≥ ∂2 ≥  ... ≥ 
∂n , 

Then   𝜋 + 𝜕
2𝐷

3
> 0

Train a model to find counter-examples, it fails, but all failed 
solutions follow a certain pattern

That a mathematician can turn into a valid counter-example 



DISCOVERING OPTIMAL CONSTRUCTIONS 
PatternBoost: constructions in mathematics with a little help from AI

Charton, Ellenberg,  Wagner, Williamson 2024, 2411.00566

 Finding discrete objects that maximize a quantity:

 Largest graphs with n nodes, but no cycle of 4

 Largest set of points on a n3 grid, with no 5 points on a sphere

 Smallest subset of the d-dimensional hypercube, with diameter d 

 Generate random solutions, make them as good as you can with local search, keep the best candidates

 Train a transformer (GPT-2) on the best candidates

 Tokenized by their adjacency matrix, using Byte Pair Encoding: standard NLP tools

 Use it to generate more candidates

 Improve them with local search

 Rinse, repeat...



DISCOVERING OPTIMAL CONSTRUCTIONS

 This works!

 Competitive on hard problems, like no square graphs

 Found hitherto unknown no-sphere solutions for n=6 (best known was 17, we found 18)

 Solved a 30 years-old conjecture about d-hypercubes with diameter d

 Also, FunSearch (DeepMind 2023): use an LLM to create programs to find solutions to combinatorial problems

 Cap Set problem: largest subset in ℤ »
𝑛with no three points on a line

 FunSearch discovered new optimal solutions



PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS
Global Lyapunov functions : a long-standing open problem in mathematics, with symbolic 

transformers,  Alfarano, Hayat, Charton, 2024, 2410.08304

 Dynamical systems: ሶ𝑥 = 𝑓 𝑥 , 𝑥 ∈ ℝ𝑛, 𝑓 ∈ 𝐶1(ℝ𝑛)

 Global stability: if we start close to an equilibrium, do we always stay close, or can we diverge to infinity

 Stability of the solar system, 3-body problem

 Lyapunov (1892) it is if you can find 𝑉 ∈ 𝐶1 ℝ𝑛, ℝ , such that for all 𝑥 ∈ ℝ𝑛,  

𝑉 𝑥 > 𝑉 0
lim
𝑥 →+∞

𝑉(𝑥) = +∞

∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0

 How to findV? An open problem except in the simplest cases



PROVING THE GLOBAL STABILITY OF DYNAMICAL SYSTEMS

 We train a transformer, on generated examples of problems and solutions, to discover Lyapunov functions

 Generating random solutions, and associated problems

 Symbolic input, symbolic output (functions)

 Beats the state of the art on polynomial systems

 Discovers Lyapunov functions for random systems for which no method is known



SYMBOLIC AI FOR SCATTERING AMPLITUDES
Transforming the bootstrap: using transformers to compute scattering amplitudes in planar n=4 super Yang-Mills 

theory, Cai, Merz, Charton, Nolte, Wilhelm, Cranmer, Dixon, 2024, 2405:06107

 Scattering amplitudes: complex functions describing particle interactions

 Their squared module are probabilities of outcomes

 Baselines for experiments, need to be computed to high precision

 Computed by summing Feynman diagrams of increasing complexity

 measured in loops: virtual particles created and destroyed in the process, correspond to loops in the Feynman diagrams

 One more loop: x10 in precision



AI FOR SCATTERING AMPLITUDES

 A hard problem

 Each loop introduces two latent variables, their integration give rise to generalized polylogarithms

 Best precision at present: loop 3 for some interactions

 Theoretical research on integration by part:  aka computational tricks

 Some ML results: Simplifying polylogarithms with machine learning, Dersy, Schwartz, Zhang, 2022, 2206.04115



BOOTSTRAPPED AMPLITUDES 

 Leverage algebraic properties of polylogarithms to predict the structure of the solution

 Up to a (large) number of integer coefficients

 That can be computed from symmetry, integrability, limit conditions

 In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”

 Symbols: homogeneous polynomials of degree 2L (L=loop), over ℤ

 Can be computed to high loops: 3 gluons form-factor to 8 loops

Bootstrapping a stress-tensor form factor through eight loops, Dixon, Gurdogan, McLeod, Wilhelm, 2022, 2204.11901



THE THREE GLUON FORM FACTOR

 3 gluons and a Higgs-like “operator”

 Symbols are polynomials in 6 (non commutative) variables 

a,b,c,d,e,f

 Loop 3: -4 bccaff + 4 bcbaff + 8 bcafff + ...

 For loop L, 62L possible keys (ordered sequences of 2L letters) 

mapped onto integers

 Most of them zero

 We want to understand the mapping



THE SIX LETTER GAME

 Coefficients are invariant by the dihedral symmetry: generated by (a,b,c), (d,e,f), (a,b), (d,e)

 Adjacencies: non-zero keys must

 Begin with a,b, or c

 End with d,e,or f

 Not have adjacent a and d, b and e, c and f, d and e, d and f, e and f

 Relations exist between identical keys up to a few letters (Fa,b is the coefficient of a key with a and b adjacent)



TRANSFORMERS FOR BOOTSTRAP

 Many other regularities exist, could a language model find them?

 Train a transformer to predict coefficients (sequences of digits in base 1000) from their keys (sequences of 2L 

letters)

 Small encoder–decoder model, trained on a fraction of a loop data, tested on its prediction of the rest

 Minimising cross-entropy, a “letter game”



EXPERIMENT 1: PREDICTING ZEROES

 Given an key, predict whether the coefficient is different from zero

 A 50/50 sample of zero and non-zero keys

 Loop 5 : after training on 300,000 examples (57% of the non-zero keys and as many zero keys), the model predict 

99.96% of test examples (not seen during training)

 Loop 6 : after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples



EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

 From keys, sequences of 2L letters, predict 
coefficients, integers encoded in base 1000

 For loop 5, models trained on 164k 
examples (62% of the symbol), tested on 
100k

 99.9% accuracy after 58 epochs of 300k examples

 For loop 6, models trained on 1M examples 
(20% of the symbol), tested on 100k

 98% accuracy after 120 epochs

 BUT a two step learning curve



EXPERIMENT 2: PREDICTING NON-ZERO COEFFICIENTS

 Full prediction, magnitude and sign

 The absolute value is easy to predict, the sign is not



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Symbols satisfy a dihedral symmetry: 6 copies of each element

 Only a few endings are possible

 8 quads (suffixes of length 4)

 93 octuples (suffixes of length 8)

 A more compact representation for higher loops, and a harder problem, because the easiest regularities have 

been removed from the training data



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Quads at loop 7: 7.3 non zero elements in the 

symbols (vs 93 million ins the full representation)

 The model learns just as well

 Same two-step shape

 The model is not “just learning” the obvious 

regularities 



EXPERIMENT 3: REMOVING OBVIOUS SYMMETRIES

 Octuples at loop 8: 5.6 non zero elements, vs 1.7 

billion)

 94% accuracy

 Smoothed two step shape

 Slower learning (600 epochs, vs 200 for quads, and 70 

for full representation)



TAKE AWAYS FROM EXPERIMENTS 1 - 3

 Transformers can complete partially calculated loops

 Coefficients are learned with high accuracy

 Even when a small part of the symbol is available

 A few unintuitive observations 

 Hardness of learning the sign

 May shed light on the underlying phenomenon



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Find a recurrence relation connecting coefficients from loop L-1, to coefficients from loop L

 A loop L key has 2L letters, we can associate it to loop L-1 “parents”, by striking out two letters

 The parents of K=aabd are aabd = bd , aabd= ad, aabd = ab, ...

 Call them P(K), there are L(2L-1) such parents

 Find a generalized recurrence linking the coefficient of K to it parents: E = f(P(K))

 A generalized Pascal triangle/pyramid (in 6 non-commutative variables)



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Predict loop 6 from loop 5:

 From 66 integers: loop 5 coefficients

 Predict 1 integer: the loop 6 coefficient

 (NOT the keys: we already know the model can predict coefficients from keys)

 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy

 A function f certainly exists (but do not know what it is)



EXPERIMENT 4: LEARNING THE NEXT LOOP

 We can learn about the unknown recurrence, by removing parents:

 Only considering strike-outs of contiguous (or close apart) positions

 k max distance for strike out : k=1 contiguous letters only,  the smaller k; the less parents

 Limited impact on performance for k larger than 1



EXPERIMENT 4: LEARNING THE NEXT LOOP

 Shuffling/sorting parents have little impact: the recurrence is almost permutation invariant

 Coupling between parent and child signs, and magnitudes



THE SIX LETTER GAME REVISITED

 Since zeros are so easy to predict, there must be a general rule for adjacent zero keys

 Generalized end-rule: keys ending with a single letter d, e or f must be preceded with a run of a, b or c

 * aaaaf can be non zero

 * abbaf must be zero

 Accounts for 92% of adjacent zeroes



THE SIX LETTER GAME REVISITED

 Since models can find relations between elements and their strike out parents exist, we could go looking for such 

empirical relations

 Rays: sequences of keys of different loops, related by a “common strikeout pattern”, 

 af, aaaf, aaaaaf, ..., or af, afff, afffff, ...

 Closed recurrences can be found, coefficients of sequences ending with a variable length run of f verify 

 With



NEXT STEPS 

 Try build loop 9, or loops for related problems

 Discover new properties of the symbol

 Symbols were calculated by exploiting known symmetries

 If we discover new regularities in the symbols, do we discover new symmetries?

 Train a language model on all loop data, and investigate its representations
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