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DISCLAIMER

= | am an ATLAS ML Forum co-convener — but this is not the “official position” of the ML
Forum

= | don't speak for Niels Bohr Institute or Berkeley Lab or Danish Data Science Academy or,
really, anybody! I'm going to give this talk from my personal vantage point

= | have tried to keep my personal interests at the door in selecting the examples in the talk. In
fact, | find a//of them interesting, but I think they are also an accurate representation of the
breadth of in-production ML

ML4Jets 2024 - ML in Experimental Physics -



WHAT DOES ML AT THE LHC “LOOK LIKE" TODAY?

There are many incredibly sophisticated ideas emerging (e.g. at this
workshop!), but I'm not going to deeply explain any machine learning ideas

My focus here is: What is being used right now to proauce rigorous results
released by a collaboration?

| embed every abstract from CDS that includes ML terminology in the title or
abstract, released by a major* LHC collaboration within the last 12 months

"Major” is biased, apologies if | have missed your work
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Combined LHC Public Results with-ML: t=SNE projection of abstract embeddings with K-means clustering

ATLAS

LMCb
ALICE

zone

WHAT DOES ML

AT THE LHC
"LOOK LIKE"

TODAY?

t-SNE component 2

-5

See this image in high def!
https://github.com/murnanedaniel/ML4Jets-
Overview/blob/main/notebooks/tsne_kmeans_cl

ustering high res.pdf =10
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CMS Simulation Preliminary CMS simulation Preliminary
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Number of jobs
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FAST SIMULATION

AT ATLAS

https://cds.cern.ch/record/2911769
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= Fast simulation at ATLAS is in production as the AtlFast3 system

= A collection of full sim, GANs, and simplified simulations

= F.g. tracking done with FATRAS leads to AtlFast3 being ~10x
faster than full sim

= However, resolution accuracies in the FATRAS configuration
have errors of O(10%), more work needed to improve

Charged
Pions
Kaons

Baryons

Muons

Geant4

Geant4
Pions:
Eun = 200 MaV

Other hadrons:
Eun = 400 MeV

Inner [T Muon
Detector Spectrometer

FastCaloSim V2

e & |n| = 2.4,

Eie < 4 GaV' & |n| < 1.4,
Ein = 1 GeV && || = 3.15

Muon
Punchthrough
+ Geant4

FastCaloGAN V2
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FLASH SIMULATION AT LHCB

= FlashSim at LHCb is called LAMARR

= In tracker, a sequence of BDTs (for ratios), NNs (for
regression e.g. of efficiencies) and GANs for
feature smearing

= Transformer-based GAN for ECAL generation

= 100x speed-up is estimated (though not yet
shown) over full sim

https://cds.cern.ch/record/2875421
https://cds.cern.ch/record/2906203
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RECONSTRUCTION

Ricerche di nuova
fisica con oggetti

pesanti ad alto
boost di Lorentz in
eventi con jet

Identification of
Lorentz-boosted jets
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experiment
LoréntzZz-boosted Jers
in the CMS
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@
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Track reconstruction
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learning tect
in CMC
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TRACKING: GNN TRACK FINDING

= Phase 2 ATLAS tracker will require fast processing of
O(350,000) hits to find O(1k-2k) particles above 1GeV

= While there is work to port traditional (CKF) tracking
to GPU, an ML approach would natively suit
hardware acceleration

=  Most mature implementation uses GNN, with physics
performance competitive with CKF

=  Computational performance measured at 500-
7/00ms per event

1.4

> B I I I LA IR I LI I
Q C ]
8 4, ATLAS Simulation Preliminary -
£ °f Vs=14TeV, f, <1>=200, p > 2 GeV -
Ll 1 Tk layout: 23-00-03 7
: ——a——1 I S = ST 2T i
0.6 =
0'4;— CKF track finding B
0.2~ GNN track finding -
0' | I | | | I
4 -3 -2 -1 0 1 2 3 4
n
(a)
https://cds.cern.ch/record/2882507
Stage Pipeline
Metric Learning (ms) Module Map (ms)
1. Graph Construction 505 69
2. Edge Classification 108 323
3. Graph Segmentation 118 118
Sum 731 510

https://cds.cern.ch/record/2914282
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TRACKING: GNN TRACK FINDING

| Long track

Reconstructible in the Velo and SciFi

Magnet

i~ 1]

\~‘\
Velo \ ®© -
Velo track Magnetic field B

Reconstructible in the Velo uT |

No momentum measurement

SciFi

HL-LHC LHCb detector to have new “Velo” tracker

One project uses same approach as ATLAS GNN
track finding: ETX4VELO

Positron-electron pairs produce shared hits, and
particles may leave multiple hits per layer

Due to these complexities, new innovations are
added, including GNN applied to “triplet graph”

Almost universally improved physics performance
over traditional tracking in Allen

Long category

Efficiency Clone rate
Allen ETX4VELO Allen ETX4VELO

Hit efficiency Hit purity
Allen ETX4VELO Allen ETX4VELO

No electrons
Electrons
From strange

99.26  99.28 (99.51) 2.54  0.96 (0.89)
97.11 98.80 (99.22) 4.25 7.42 (7.31)
97.69 97.50 (98.06) 2.50  0.92 (0.81)

06.46 98.73 (98.90) 99.78 99.94 (99.94)
05.24  96.54 (96.79) 97.11 98.46 (98.46)
07.60 98.22 (98.77) 99.34 99.68 (99.68)

ML4Jets 2024

https://arxiv.org/pdf/2406.12869
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TRACKING: LINE SEGMENTS

= In HL-LHC CMS tracking, seeds are built from
progressively longer line segments (LS) in the outer
tracker

= These LSs are based on physical heuristics, given
minimum requirements of e.q. pT

= A first analysis released of ML applied to this track
finding approach, shows significant reduction in fake
tracks (>2x)

= Tracking efficiency of large radius tracks also boosted
by 5-10%

Signal efficiency
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* pre-DNN (82% sig eff, 43.9% bkg eff)
— 1-layer DNN (AUC = 0.86)
[ m 1-layer DNN 82% signal eff. (24.8% bkg. eff.) |
2-layer DNN (AUC = 0.89) ;
2-layer DNN 82% signal eff. (20.0% bkg. eff.) 1
. 3-layer DNN (AUC = 0.91)
A 3-layer DNN 82% signal eff. (17.5% bkg. eff)
- 4-layer DNN (AUC = 0.91)
| +* 4- Iayer DNN 82% S|gnal eff. (1 6. 5% bkg eff. )
| L. . : !
0.0 0.2 0 4 O 6 O 8 1 O

Background efficiency

https://cds.cern.ch/record/2882251
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CMS simulation Preliminary 13.6 TeV
T T T T ]

= 90 6000
% - tfevents, pr > 20 GeV, |n| < 2.4, g, =70% 1
TAGGING & JETS: UNIFIED £ cltmicon oo
. % 7ol udsg jet rejection
TAGGING IN CMS K |
50 |
g = {3000
401 .
30 8.2 -{2000
i 45 1
] S 1000
10 |
: 1.0
0 DeepCSV DeepJet I PNET UParT

= Latest CMS jet tagging uses a form of
ParticleTransformer called UParT

- QMS Sirlnqlafiqn I?rglimipalry' | 13.6 TeV
tt events

pr > 30 GeV, |n| < 2.5

- B UParT R-NGM on R-NGM

| B UParT nominal on R-NGM

- UParT R-NGM on nominal

. M UParT nominal on nominal

| — buvsc
----- b vs udsg

= Trained to predict b, ¢, tau, and s (for the first time) as
well as energy regression and resolution quantiles —
performance is significantly better than previous models

(upper plot)

= UParT trained with adversarial attacks to increase
robustness to mismodelling (lower plot)

10"

102

c/udsg-jet misidentification efficiency

108 L i Al L
0.0 0.2 0.4 0.6 0.8 1.0
b-jet tag efficiency

https://cds.cern.ch/record/2904702
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TAGGING & JETS: UNIFIED
TAGGING IN ATLAS

= [atest ATLAS tagger GN2 also grounded on
transformer encoder

= Besides jet type classification, two further tasks
performed: track origin and pairwise classification
of shared track vertex

= Asin UParT, dramatic improvement of GN2 over
earlier taggers

= Sophisticated training with uP and uTransfer, for
better weight updates at high learning rates, and
better transfer of hyperparameters from small to
large models, respectively

/\| | BERKELEY LAB ML4Jets 2024 -
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TAGGING & JETS: CHARGE CLASSIFICATION

= W and Z jet classification appear to be a harder target,

R =L but one that CMS is studying
c - ‘/-—-"" - .
Lo CMS — ] . . .
Qo ~ -~ = -
S, b Simuation = E = Use a Dynamic GNN (i.e. the graph is constructed on
2 F Preliminary oadl E the-fly) — not UParT
0.7 7 -
: /7 . . . .
osE- % E = Very similar performance on data and simulation,
e / ] . . .o
osE- / E without even adversarial training
“E / -
o4 // E b e BRI y
0. 3§_ // Jet charge tagger AUC = 0.77 _i E mi_gr:zr?mary ";'::Ei:l\:laliun Tx:.:::.auu" _; :C_é::: Ergggmary V. e :%
02f// — — detcharge (k-0 AUC =073 o o Do S E
0.1_/ ------- Random _§ :moi— E z: E
0 S N R = a0 -
0 0.2 0.4 0.6 0.8 1 C
W efficiency 10

o
o
of
nL
=]
w
=

https://cds.cern.ch/record/2904357

05 06 07 08 09 1
Jet charge tagger output score
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DEEP FULL EVENT INTERPRETATION

= Inruns 4 and 5, LHCb aims to run triggerless, by HHCh period ol T ik Numebhadtons - Hum ¢adons
storing only parts of each event's “full event Rums 1.2 1 50 <1 <
interpretation” — a description of the decay chains of NP o «! ",
all particles
= Treats decay chain as a tree-style graph, with target of
predicting the lowest common ancestor (LCA) for g ong ————————
each leaf in the graph :% 0.8F —e—s Particles from b-hadron decays | 3
% 0.7 E— —e—i Particles from the rest of the event —E
= Similarities with Belle Il FEI ML approaches S 06 E
= By building the graph, and selecting only those 2 82_ E
branches from b-hadron decays, high efficiency 7 03F E
preserved with significant reduction in event size 221; E
O T T T 0 a0
https://link.springer.com/article/10.1007/s41781-023-00107-8 # particles in event
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PARTICLE I.D. WITH MISSING DATA

= Particle ID in ALICE relies on many subdetectors, each of which
may have inefficiency or mis-reconstruction

= Rather than throw away any data with suspected inefficiency,
this work aims to train a robust particle ID network with “Feature
Set Embedding” — embedding of features and their one-hot
encoding

= Allows a geometric notion of “similar features” and enables
missing feature inputs

= Considerable improvement in incomplete setting over standard
particle ID algorithm

(a) 3 data samples with 4 attributes with different amounts of missing values.

id | momentum | TOF | TPC | TRD
1 0.1 3
2 7 70 24 13
3 78
(b) First particle. (c) Second particle.
key value key value
0|00 0.1 10|00 7
o|1]o0 3 0|1]0]0 70
olo|1]o 24
0o|l0]0]|1 13
(d) Pion identification on
data including incomplete
examples.
Model Precision Recall Fy
Standard  99.89 + 0.01 7837+ 0.01  8T.87 + 0.87
Ensemble  O7.47 + 0.25  99.46 £ 021  98.45 4 0.04
Mean 97.31 £ 0.07 9952 £ 007 9840 £ 0.01
Proposed  97.49 + 0.06  99.54 + 0.05 98.50 + 0.02

(d) Third particle.

key

value

0

1

0

0

78

Regression

97.33 £ 0.06

99.49 £ 0.07

98.40 + 0.04

https://cds.cern.ch/record/2893904

ML4Jets 2024 - ML in Experimental Physics -
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ANALYSIS

IS measurements of
»y quark

ir/single top +

son production

cl. EFT searches)
Antitop Assaciated
Production Processes
and Mechanical
Design and Thermal
Performance of the
CMS Inner Tracker
Endcap Pixel Upgrade je

Search for lepton
flavour violation in
top quark
interactions with an
up-type quark, a
muon, and a tau
lepton

Measurement of time-
dependent CP
violation in $B_s~0

\to JApsiy,
\phi(1020)$ decays
with the CMS
detector

Measurement of the

differential
dileptonic
tt

cross section in a

BSM phase space with
the CMS detector
using the full LHC
Run 2 data set

its extensions, in
leptonic final

states with the CMS
detector at the LHC
using machine
learning techniques.

Search for top
squarks in final
states with many
light flavor jets
and 0, 1, 0r2
leptons in proton-
proton collisions at
sgri(s) = 13 TeV

A Search for Long-
Lived Particles in

Signatures With
Displaced Vertex
Using Novel Machil
Learning Technigue

Search for light |2t EMS

Search for low-mass \sqrt{s}= $ 13 Te\

Treatment of

identification and

Search for the Higgs
boson produced in
association with a
top quark using enerative Models

T leptons with r High Energy

ATLAS hysics Measurements

Constraints on the
Higgs self-coupling

the Large Hadron
Collider

Exploring the Limits
of the Standard
Model with the ATLAS

Experiment at the
LHC

The Beauty and Charm|

systematic i
uncertainties in | Yukawa Couplings of
brjet the Higgs Boson with

the ATLAS Detector
at the LHC. - 4D

long-lived particles
decaying to
displaced jets in
proton-proton
collisions at
$\sqrt{s} =

~ h Te —_—
13.6~\mathrm{TeV}$ Tow Energy L2

in High Energy
Physics: A Sea
for Physics be
the Standard [
with Compres:
Mass-Spectra

Algorithms for
Triggering on

Electrons at tt
High Luminosi

Extending the Reach
of Searches for
Staus, Charginos and
Neutralinos with the
ATLAS Experiment at
the Large Hadron
Collider

boson decays to
b-quarks with the
ATLAS detector

1t of Tracking, Particle

Flow and Jet Flavour
Reconstruction
Algorithms
Development

Measurement of Higgs
Boson Decays to
Bottom and Charm

two

to charm 3
from toda)|
row

Quarks in the WH
Production Channel
with the ATLAS

Experiment

Search for intrins

experiment

Development of
M machine learning

based T trigger

algorithms and

search for Higgs
boson pair

production in the

bbrt decay

channel with the CMS
detector at the LHC

Probing Quark
4 Hadronization with B
mesons at the LHC

The flash-simulation
paradigm and its
implementation based
on Deep Generative
Models for the LHCb
experiment at CERN

L 4

electroweak
supersymmetry with
compressed spectra

A simultaneous
unbinned

differential cross
section measurement
of twenty-four
Z+jets kinematic
observables with the
ATLAS detector

ctives:
ng the Exotic
Hadronic Jets
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BSM SEARCHES: SEMI-SUPERVISED
LEARNING

mode]

in a dark sector "Hidden Valley” scenario

of 2-5 TeV

Effective Cross Section o8 (fb)

10}

10° 4

Limit - Rinv = 0.2 (With Systematics)

-®- Expected
- +/-10
+/-20

—— Theory
—e— Observed
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~

Effective Cross Section o8 (fb)

102 4

10% 4

10° 4

Limit - Rinv = 0.4 (With Systematics)
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- +/-1l0
+-20

—— Theory
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2000 2500 3000 3500 4000 4500 5000
Z' Mass [GeV]
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Effective Cross Section o8 (fb)

ATLAS bump hunts in those SRs place bounds on Z" mass

Supervised PFN coupled with VAE applied to final encodings: ANTELOPE

Used to find possible anomalous signal regions in top mass and Z' mass,

Limit - Rinv = 0.6 (With Systematics)

-®- Expected
- +-10
+/-20
—— Theory
—e— Observed

2000 2500 3000 3500 4000 4500 5000
Z' Mass [GeV]

Learned per-particle set representation ¢

Effective Cross Section o8 (fb)
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Variational Auto-encoder

Limit - Rinv = 0.8 (With Systematics)
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+/- 20
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—e— Observed

3500 4000 4500 5000
Z' Mass [GeV]

https://cds.cern.ch/record/2907718?In=en
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number of tracks per vertex
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BSM SEARCHES: LLP LIMITS WITH GNN

Search for LLPs in SUSY scenario, with background rejection
improved by Interaction Network

Validation of background estimation performed with ABCDisCo,
with distance correlationin the loss function:

L= Lbce + )\reg ) Lreg + }‘dcwr ’ dem‘rr

Loss encourages ML Score out of the GNN to be model-
independent (as seen by flat performance across number of tracks)

Improves on previous ATLAS & CMS gluino mass exclusions

https://cds.cern.ch/record/2889341
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https://cds.cern.ch/record/2899862

1

P2 o L
E —

BSM SEARCHES: RPV SUSY y.

O oy o O

t 0
X1

An analysis studying signals of RPV SUSY top squarks goes further in decorrelation
Proposes ABCDisCoTEC: includes non-closure tests in the loss function

This approach is proven to maintain the closure tests, and place new bounds on top squark
Masses

138 fb™ (13 TeV)
— -
. CMS preliminary 138 fb* (13 TeV) '8_ 3 - CMS RPV
Y o 10°E  Preliminary %= .. (NNLO+NNLL)
o 02 ) =
15,: 0.0 {=B-h-@—nl A o ® + o ote A Y o 102 ;_ 95% CL upper limits
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BSM SEARCHES: RPV SUSY

= Signal regions are required to have seven or more high-pT jets

= This leads to high combinatorics, so a transformer is trained to
assign each jet to one of the gluino candidates (or a non-
signal)

= Plot on right gives assignments passing score vs. target number
of assignments across average gluino mass, with good
agreement

= Jet counting approach allows strong limits to be placed on
gluino mass in RPV SUSY

https://cds.cern.ch/record/2901186
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BSM SEARCHES: HIGGS DECAYS TO LLPS

= CEPC sensitivity study, using low-level calorimeter and inner
tracker features in a heterogeneous LorentzNet-like GNN

= Expected to improve branching ratio limits by three orders of
magnitude compared with ATLAS+CMS (using an order of
magnitude fewer Higgses)

= CEPC can run triggerless, and with ML is expected to have
very high efficiency for LLP-type signatures

https://cds.cern.ch/record/2913609
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UNFOLDING: TRACK
FUNCTIONS

Track functions are useful to understand
proportions of track energies deposited in
jets, and having good estimates on
uncertainty will improve theory as well as their
use in other reconstruction and simulation
tasks

To unfold detector effects, uses OmniFold in
RooUnfold

Unfolded data (upper plot) shows good
agreement with both generators

Unfolding revealed discrepancies in some
‘cumulants” (ways of decomposing the
charge-to-all ratio distributions of jet
constituents) — needs investigation!

https://cds.cern.ch/record/2905858
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UNFOLDING: UNBINNED DIFFERENTIAL CROSS SECTIONS
MEASUREMENT IN Z+JETS

= Uses OmniFold to produce first high-dimensional (24 observables) unbinned measurement of fiducial cross sections

https://cds.cern.ch/record/2899105

= ML initialization uncertainties are handled by training 100 copies of each network to take the median weight

= Statistical uncertainties are handled by perturbing input samples and re-performing full analysis, across 250 variation

25 independent components are used to calculate systematic uncertainties

e.g. the below plot shows good agreement even with derived observables
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UNFOLDING: MULTIFOLDING EVENT ooy M2up K0Tl
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PARAMETER ESTIMATION: NEURAL
SIMULATION-BASED INFERENCE

T T S S
- ATLAS Simulation Preliminary

—— Unbinned NSBI
-—= Binnedlog [ps /p(p=1.0)] 15 bins 4
+ Binned p(u = lscan)/p(ts =1.0) 16 bins /

Binned p(u = Uscan)/p( = 1.0) 21 bins ’
#*  Binned p(u = Ygean)/p(pr =1.0) 31 bins s
+« Binned p( = tsean)/p(p = 1.0) 91 bins

:__H_,ﬁofixed .

—— NSBI =

https://cds.cern.ch/record/2915357

ML4Jets 2024

Can apply similar classifier-based technigues as in
OmniFold, but to parameter estimation — necessary

in cases with quantum interference

Neural Simulation Based Inference applied to ATLAS

Higgs to 4-lepton channel

Systematics handled with 3 trainings per nuisance

parameter

At small parameter differences, quantum

interference important, so NSBI has higher test

sensitivity than binned approaches
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CONVERGENCES & DIVERGENCES

= Simulation is clearly converging towards a need for ML, with ATLAS and LHCb converging on GANs and
CMS diverging towards normalizing flows

= Reconstruction generally converging towards GNNs for tracking and transformers for jet physics, in
particular multi-tasking and multi-modal models that can handle uncertainties and mismodelling

= Self-supervised models are emerging in all experiments, either for scouting trigger channels, or for defining
signal regions. Weakly-supervised methods already converged to ideas such as ANODE, but newer self-
supervised models not yet converged on a best path (supervised task with VAE in latent space, masked
prediction a la foundation model, something else?)

= All experiments converging to early use of advanced ML in analysis (e.g. transformers for jet matching), but
diverging on how it is used

= Unfolding converging towards unbinned (in particular the OmniFold formalism), with more than one
experiment discovering modelling discrepancies with this approach
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NEW & OLD CHALLENGES

= Simulation: Solved as a patchwork. New challenge may be one-shot conditional generator-to-simplified-
AOD

= Decorrelations and model-independence: An old challenge that actually now seems to have some serious
tools to tackle (DisCo(TEC), adversarial attacks, feature pair embeddings)

= QOversampling, undersampling, SMOTE, weighting: Handling class imbalances and event weighting seems to
be a mostly solved challenge. There are more sophisticated ideas appearing such as SMOTE, which open the
question back up a little

=  Quantifying uncertainty: I'm not convinced that any of the highlights in this talk have “solved” uncertainty
quantification. If anything, this will get harder and harder as models get more sophisticated

= Sharing data, models and weights in an unbinned era: As we (hopefully!) move closer to sharing lower-level
features, unbinned observables, even encoded pieces of events, we may need to re-think our data storage
and sharing infrastructure
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