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Theory Overview
with a personal bias



Theorists are cheap but developing the Standard Model of 
Particle Physics has a non-negligible price tag and is resource 
limited. 
Can we replace this with a single year of compute on an A100?

Why?
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but why? What makes these formalisms/algorithms special,  
i.e. how can we search for them?
They are efficient in describing these systems.

This makes such formalisms susceptible for optimisation.
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Example: predicting trajectories
Networks with physical bias are more efficient

• Networks with correct functional bias show better 
generalization:


• Here: functional bias has been built in. Can we learn/generate 
the formalism as well?

 p
q

 ·p = − ∂H
∂q

·q = ∂H
∂p

NN 
Model H p

q
NN 

Model
 ·p

·q

Battaglia et al 2016 (1612.00222)  
Greydanus et al. 2019 
…



Can we get symbolic descriptions?
Current approaches

• Learn NN and then use your favourite symbolic regressor (e.g. PySR, cf. M. 
Cranmer et al.). Problem: inference always from scratch (genetic algorithm) 

• Learn transformer model on known symbolic descriptions (cf. Charton et al.). 
Problem: in general we do not know the symbolic description


• Combine both in one step (cf. 1912.04871)?



Getting symbolic expressions directly with transformers

• Combine both in one step (cf. 1912.04871)? Here: transformers [wip with Gu, Kiendl] 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Open: further benchmarking, scaling to interesting expressions 

Optimisation: 
• Generate sample expressions 
• Take top expressions 
• Loss 
      , 

      ,  

,   

• Update with .

L1 = ∑
i

(Ri − Rthreshold)∇θlog (P(expression |data))

L2 =
#tokens

∑
i

γiHi

R = 1
1 + RMSE/σy

Hi = ∑
topexp.

P(tokeni |data, token0:i−1)

L1 + αL2

Input: data 
sample 
(x,f(x))

Model: Encoder - 
Decoder 

transformer

Output: 
P(tokeni+i |data, token0:i)



From toy models to benchmarks



Benchmark: (Symbolic) Calabi-Yau metrics

• Yau (70s): Ricci-flat metrics on Calabi-Yau manifolds exist but no explicit construction to 
this date. CY manifolds are of interest as compactifications in string theory.


• Problem to solve: Solving Einsteins equations on compact six-dimensional manifolds


• NNs for efficient solutions (active field with various packages [2410.19728,2211.12520, 
2205.13408] and phenomenological applications are started to be explored [2407.13836, 
2411.00962]). In special cases (Fermat quintic) down to machine precision [0908.2635].


• Challenge: For precision metrics, can we find symbolic expressions? Issue, overcome 
combinatorial explosion due to high number of variables, e.g.:  

             K = − log (1 +
4

∑
i=1

|zi |
2 )
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ML for Exploration in Theory Space

• We have many theories but we have not yet 
explored their phenomenology. Why bother? 
Unexplored whether they contain new methods to 
address our old problems (e.g. EW hierarchy 
problem, cosmological constant)


• Can we search existing theory space efficiently? 
Not until recently (e.g. string theory model space  
BSM models) as tools were missing.


• Case study: Flux compactification of type IIB string 
theory (see also work on IIA (e.g. Loges, Shiu) and 
heterotic string theory (e.g. Abel, Constantin, 
Fraser-Taliente, Harvey, Lukas…))

⊂

cf. D. Whiteson’s talk string_data 2023

We are limited by theorists’ intuition.

Team & Papers 
2107.04039, 
2111.11466, 
2209.15433 
2306.06160, 
2307.15749, 
2308.15525



Tools for string theory model space exploration

• Model space: (Geometry, Local sources); 
Local sources are subject to consistency 
constraints such as anomaly cancellation


• EFT algorithm “known” and can be 
evaluated using appropriate derivatives with 
respect to fields parametrizing the extra-
dimensions:  
(discrete input to prepotential  Kähler 
potential, superpotential  scalar potential)


• Optimisation


• Tools to efficiently access many of such 
models: custom JAX code for vectorised 
and compiled machinery

→
→



First applications

• We finally can sample from this space efficiently:


• Next steps: explore with appropriate numerical tools to efficiently sample from these 
model spaces.

Naive scaling

More interesting

Our samples
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Formalising TP and proving

• Idea: LLMs for automated theorem proving 
(silver medal Math olympiad this year);  
TP also has theorems and conjectures.  
Can this be useful?


• LeanBSM: first steps in formalizing HEP 
questions in Lean. E.g. proving that our 
Higgs potential has a minimum.

Joseph Tooby-Smith, 2405.08863



Blueprints
Splitting proves into parts — Roadmaps for larger proofs

• Roadmaps for theoretical 
physics: we often do not 
actually know why a particular 
question in TP is relevant (e.g. 
why your favourite string 
theory colleague cares about 
the KKLT scenario in string 
theory).


• What can be included? 
Assumptions, experimental 
data.

https://imperialcollegelondon.github.io/FLT/blueprint/index.html

Example from mathematics: Fermat’s Last Theorem
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TP for improved ML
Designing diffusion models with renormalisation group methods

• Designing diffusion models inspired by comparison with renormalisation 
group methods:


1) Basis, 2) Prior distribution, 3) Noise Scheduling

Gerdes, Cheng, Welling 2410.02667

Data White 
Noise

Diagonal pixel basis
Data Scale-invariant 

distribution
Diagonal frequency basis

Erases information from high to low-frequencies

Standard diffusion Renormalisation Group
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based on 2202.11104 (MLST), 2305.00995 (MLST), and 2410.07451:

Michael Spannowsky Sam Tovey Konstantin Nikolaou Christian Holm
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Neural NetworkInput data Output

Analytic function, but many parameters so it’s not a simple function.

Do we know what is going on inside them?



Some hints: scaling laws
e.g. performance improves with more parameters

22
e.g. Kaplan et al 2020 Scaling laws for neural language models
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Kaplan et al 2020 Scaling laws for neural language models

Do we know what is going inside NNs? 
 
For us becomes: Theoretical framework to quantify dynamical behaviour of NNs?



Physics to understand NN dynamics
Problems and our approach

• We cannot afford hyperparameter scans 
for such large networks. How to 
successfully predict training performance?  

Parameters 175 billion
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Training Cost ~ $4.6 million
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Training Time Several months

Training Cost ~ $4.6 million

Neurons 86 billion

Object recognition 
time[2]

150 ms

Energy cost[1] < 20 W

[1] (Sterling & Laughlin, 2015), [2]  (Thorpe et al., 1996) OpenAI
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• Our NN networks are not energy efficient. 
How to improve efficiency of NNs to make 
them useful with less computational 
resources?

cf.  Lahiri, Sohl-Dickstein, Ganguli 1603.07758

Describe neural networks & dynamics via dynamics of collective variables. 
Aim: control and improve learning of NNs. 



How do we link dynamics of 
NNs and collective variables?

25



Understand NN dynamics via empirical NTK
Simplification of dynamics in large width limit

• The dynamics of a neural network  simplify in the infinite width limit.


• The NN equations in continuous time limit:  
               
               


    


• NN update simplify in large width limit: Neural tangent kernel remains constant 
(empirical and analytical): 
                    


• Complete as all learning components included:  
finite data, optimisers, and NN architecture


• Not sufficient (e.g. not capturing feature learning), in practice 
 at finite but large width.  

Which simple model describes the dynamics of NTK?


f(x, θ)

·θ = − η∇θℒ = − η∇θ f(y)∇f(y)ℒ
·f(x) = ∇θ f(x) ·θ = − η∇θ f(x)∇θ f(y)∇f(y)ℒ = − ηΘ(x, y)∇f(y)ℒ

Θ(t, x, y) = Θ(t = 0,x, y)

Θ(t, x, y) ≈ Θ(t = 0,x, y)

26

Krippendorf, Spannowsky: 2202.11104

Tovey, Krippendorf, Nikolou, Holm: 2305.00995

Jacot, Gabrial, Hongler 
Lee, Xiao, Schoenholz, Bahri, Novak, Sohl-Dickstein, Pennington 

Novak, Xiao, Hron, Lee, Alemi, Sohl-Dickstein, Schoenholz

Wide resnet trained by SGD 
with momentum on 

CIFAR-10 (from 1902.06720)



Scales in NN dynamics
Hierarchical spectrum in NTK  EFT (coll. variable) approach promising→

• Diagonalise NTK ( ) NN-update equation: 
 
     

• Largest changes in modes with largest eigenvalues.

• Hierarchical spectrum in NTK, consequences:


• Effectively dynamics take place in lower-dimensional 
subspace.


• There are few “collective” variables in NTK which 
determine the dynamics. Their time evolution is what we 
need to understand.


• Limit: adding more data does not change dynamics if 
non-vanishing eigenvalues are not changed (naturally 
cut-offs do appear analogy with effective field theories).

ΘNTK
·̃
f(𝒟) = − η diag(λ1, …, λN) ℒ′ (𝒟)

cf. Gur-Ari, Roberts, Dyer 2018

27spectrum perspective: 2202.11104 (MLST)



Variables to capture significant changes in spectrum
Overall magnitude of NTK (trace) and diversity entropy

• We see that the maximal eigenvalues of the NTK is very 
dominant and was relevant in the mean evolutions of the 
network: 
 

               Tr(ΘNTK) = ∑
i

λi ≈ λmax

• The # of relevant modes differs between tasks. A variable which 
is independent of the # of modes is the following entropy:  
 

                  

(here:  normalised eigenvalues of )

SVN = − ∑
i

̂λi log ̂λi

̂λi ΘNTK

‣   How do these two variables correlate with neural network 
behaviour? How do they evolve during training?

28



NTK evolution study
Collective variables

• Universal behavior 
of training 
dynamics: 
information 
compression at the 
beginning of training 
and then structure 
formation (increased 
trace and entropy 
for large model)


• Definition of deep 
learning regime via 
entropy behaviour

MNIST CNN



A biased selection for BSM 

• LLMs for symbolic regression (formalism search): beyond next word 
prediction


• Automated theorem proving: LEAN meets physics (HEPLean)


• Benchmark for symbolic regression: CY-metrics


• Flux-vacua: exploring BSM model spaces


• Improving diffusion models with RG


• Theory for ML: collective variables of NTK



Thank you!

Advertisement: ML  Physics growing in Cambridge 
• DIS MPhil (1 year Master) 
• DIS CDT (graduate school) 
• MOU: Cambridge-Infosys AI Lab [postdocs, students] 
• And a lot of cool people to work with…

∩


