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Why?

Theorists are cheap but developing the Standard Model of
Particle Physics has a non-negligible price tag and is resource
limited.

Can we replace this with a single year of compute on an A1007
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As physics students we learn formalisms/algorithms to describe dynamical systems

As physicists we develop and teach formalisms/algorithms to describe dynamical systems

but why? What makes these formalisms/algorithms special,
I.e. how can we search for them?

They are efficient in describing these systems.

This makes such formalisms susceptible for optimisation.



Grav. 2-body system
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Example: predicting trajectories
Networks with physical bias are more efficient
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* Networks with correct functional bias show better )
generalization: / :
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* Here: functional bias has been built in. Can we learn/generate
the formalism as well? N
SCNN "5,
\,
Battaglia et al 2016 (1612.00222) \\\-”// /

Greydanus et al. 2019



Can we get symbolic descriptions?

Current approaches

 |Learn NN and then use your favourite symbolic regressor (e.g. PySR, cf. M.
Cranmer et al.). Problem: inference always from scratch (genetic algorithm)

* | earn transformer model on known symbolic descriptions (cf. Charton et al.).
Problem: in general we do not know the symbolic description

 Combine both in one step (cf. 1912.04871)7



 Combine both in one step (cf. 1912.04871)? Here: transformers [wip with Gu, Kiendl]
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* Open: further benchmarking, scaling to interesting expressions



From toy models to benchmarks



Benchmark: (Symbolic) Calabi-Yau metrics

* Yau (70s): Ricci-flat metrics on Calabi-Yau manifolds exist but no explicit construction to
this date. CY manifolds are of interest as compactifications in string theory.

* Problem to solve: Solving Einsteins equations on compact six-dimensional manifolds

* NNs for efficient solutions (active field with various packages [2410.19728,2211.12520,
2205.13408] and phenomenological applications are started to be explored [2407.13836,
2411.00962]). In special cases (Fermat quintic) down to machine precision [0908.2635].

* Challenge: For precision metrics, can we find symbolic expressions? Issue, overcome
combinatorial explosion due to high number of variables, e.g.:

4
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A growing landscape

ML for mathematics discovery

ML for inference on pheno

models *

Formalising TP and proving TP for improved ML

* covered widely in a large fraction of talks at ML4Jets. Exciting developments but excluded in this talk for time reasons.



ML for Exploration in Theory Space

ited by theorists’ ibxtuitfn

R

* We have many theories but we have not yet
explored their phenomenology. Why bother?
Unexplored whether they contain new methods to
address our old problems (e.g. EW hierarchy
problem, cosmological constant)

* Can we search existing theory space efficiently?

Not until recently (e.g. string theory model space C Team & Papers
BSM models) as tools were missing. 2107.04039,
- | _ 2111.11466,
e Case study: Flux compactification of type |IB string 9009 15433
theory (see also work on lIA (e.g. Loges, Shiu) and 2306.06160,
heterotic string theory (e.g. Abel, Constantin, 2307.15749,

Fraser-Taliente, Harvey, Lukas...)) 2308.15525




Tools for string theory model space exploration

 Model space: (Geometry, Local sources);
Local sources are subject to consistency
constraints such as anomaly cancellation

 EFT algorithm “known” and can be

evaluated using appropriate derivatives with

respect to fields parametrizing the extra-
dimensions:

discrete input to prepotential — Kahler
potential, superpotential — scalar potential

* Optimisation

* Jools to efficiently access many of such
models: custom JAX code for vectorised
and compiled machinery
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First applications

* We finally can sample from this space efficiently:

—— o=1
' n o=2
o Naive scaling —+ °22
5
S 10 | Our samples
: .
More interesting |
‘106 104 105 10 107

Sample size

* Next steps: explore with appropriate numerical tools to efficiently sample from these
model spaces.



Theory N ML

A growing landscape

* covered widely in a large fraction of talks at ML4Jets. Exciting developments but excluded in this talk for time reasons.



Formalising TP and proving

* |dea: LLMs for automated theorem proving
(silver medal Math olympiad this year);
TP also has theorems and conjectures.
Can this be useful?

 LeanBSM: first steps in formalizing HEP
questions in Lean. E.g. proving that our
Higgs potential has a minimum.

lemma IsMinOn_potential_iff_of_uSq_nonneg {uSq lambda : R} (source)
(hLam : O < lambda) (huSq : 0 < usSq) :
IsMinOn (potential uSq lambda) Set.univ @ < |[@| =~ 2 = uSq /(2 * lambda) := by




Blueprints

Splitting proves into parts — Roadmaps for larger proofs

 Roadmaps for theoretical W e et T o e+ it x
physics: we often do not
actua!ly k.now Why a particular Example from mathematics: Fermat’s Last Theorem
question in TP is relevant (e.qg.

why your favourite string e
theory colleague cares about == b

the KKLT scenario in string ‘ - S—
theory).

 What can be included?
Assumptions, experimental
data.

https://imperialcollegelondon.github.io/FLT/blueprint/index.html
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TP for improved ML Gerdes, Cheng, Welling 2410.02667

Designing diffusion models with renormalisation group methods

* Designing diffusion models inspired by comparison with renormalisation
group methods:

Standard diffusion Renormalisation Group

. Diagonal pixel basis . . Diagonal requency basis -

Erases information from high to low- frequenmes

1) Basis, 2) Prlor dlstrlbutlon 3) Noise Schedullng
AANENE" G




based on 2202.11104 (MLST), 2305.00995 (MLST), and 2410.07451:

Michael Spannowsky Sam Tovey Konstantin Nikolaou Christian Holm
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Are neural networks black boxes?
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Are neural networks black boxes?

Input data ——l Neural Network —— Output

Analytic function, but many parameters so it’s not a simple function.

Do we know what is going on inside them?
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Some hints: scaling laws

e.g. performance improves with more parameters

Test Loss
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

22

e.g. Kaplan et al 2020 Scaling laws for neural language models



We were able to precisely model the dependence of the loss on NV and D, and alternatively on NV and S, when
these parameters are varied simultaneously. We used these relations to derive the compute scaling, magnitude
of overfitting, early stopping step, and data requirements when training large language models. So our scaling
relations go beyond mere observation to provide a predictive framework. One might interpret these relations
as analogues of the ideal gas law, which relates the macroscopic properties of a gas in a universal way,
independent of most of the details of its microscopic consituents.

It 1s natural to conjecture that the scaling relations will apply to other generative modeling tasks with a
maximum likelihood loss, and perhaps in other settings as well. To this purpose, it will be interesting to
test these relations on other domains, such as images, audio, and video models, and perhaps also for random
network distillation. At this point we do not know which of our results depend on the structure of natural
language data, and which are universal. It would also be exciting to find a theoretical framework from
which the scaling relations can be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we
have observed. Such a theory might make it possible to derive other more precise predictions, and provide a
systematic understanding of the limitations of the scaling laws.

Kaplan et al 2020 Scaling laws for neural language models
23
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of overfitting, early stopping step, and data requirements when training large language models. So our scaling
relations go beyond mere observation to provide a predictive framework. One might interpret these relations
as analogues of the ideal gas law, which relates the macroscopic properties of a gas in a universal way,
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It 1s natural to conjecture that the scaling relations will apply to other generative modeling tasks with a
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test these relations on other domains, such as images, audio, and video models, and perhaps also for random
network distillation. At this point we do not know which of our results depend on the structure of natural
language data, and which are universal. It would also be exciting to find a theoretical framework from
which the scaling relations can be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we
have observed. Such a theory might make it possible to derive other more precise predictions, and provide a
systematic understanding of the limitations of the scaling laws.

Do we know what is going inside NNs?

For us becomes: Theoretical framework to quantify dynamical behaviour of NNs?

Kaplan et al 2020 Scaling laws for neural language models
23



Physics to understand NN dynamics

Problems and our approach

Parameters 175 billion

@ ChatGPT Training Time Several months

Training Cost ~ $4.6 million

OpenAl

 We cannot afford hyperparameter scans
for such large networks. How to
successfully predict training performance?

Neurons 86 billion J

Object recognition 150 ms B

timel2

Energy costll <20W

J

[1] (Sterling & Laughlin, 2015), [2] (Thorpe et al., 1996)

* Our NN networks are not energy efficient.
How to improve efficiency of NNs to make
them useful with less computational
resources?

cf. Lahiri, Sohl-Dickstein, Ganguli 1603.07758
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Physics to understand NN dynamics

Problems and our approach

Parameters 175 billion Neurons 86 billion J
Object iti
@ ChatGPT Training Time Several months jec tir:::[;?m ion 150 ms K

~ $4.6 million Energy costl!l <20 W )

Training Cost

OOOOOO [1] (Sterling & Laughlin, 2015), [2] (Thorpe et al., 1996)

* Our NN networks are not energy efficient.

) ¥V S Canhn?t aﬁordt hyplf rpﬁlram?ter SCans How to improve efficiency of NNs to make
Of such large Networks. row 1o them useful with less computational
successfully predict training performance? resources?

cf. Lahiri, Sohl-Dickstein, Ganguli 1603.07758

Describe neural networks & dynamics via dynamics of collective variables.
Aim: control and improve learning of NNs.
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How do we link dynamics of
NNs and collective variables?



Understand NN dynamics via empirical NTK

| | | | | | | | | LOSS
Simplification of dynamics in large width limit 0. 14 e e
0.12}---+.-.| — Train |
0.10 \\.-----..| == Train fi, |
« The dynamics of a neural network f(x, 8) simplify in the infinite width limit. 0.08 --\-- — fest
0.06F--\A- '
 The NN equations in continuous time limit: 004 L :
) — _ — _ 0.02
0=—-nVyZL =—nVyf(y) Vf(y)c>CZ 0.00 Lot oot o o ..
- - - 10° 10* 102 10° 10*
J(x) = Vo f(x) 0 = =V f(X) Ve f(¥) Viy)Z = = 1O, y) Vi L t
NN update simplify in large width limit: Neural tangent kernel remains constant
(empirical and analytical): 10 Accuracy
O, x,y) =0 =0.x,y) R
« Complete as all learning components included: Wide resnet trained by SGD 0.8
finite data, optimisers, and NN architecture with momentum on 0.6
o | | | _ CIFAR-10 (from 1902.06720)
* Not sufficient (e.g. not capturing feature learning), in practice 0.4
O, x,y) =~ O~ = 0,x, y) at finite but large width.
Which simple model describes the dynamics of NTK? 0.2
| Jacot, Gabrial, Hongler T T
Krippendorf, Spannowsky: 2202.11104 Lee, Xiao, Schoenholz, Bahri, Novak, Sohl-Dickstein, Pennington 0.0 0 aml amD an3 2
Tovey, Krippendort, Nikolou, Holm: 2305.00995 Novak, Xiao, Hron, Lee, Alemi, Sohl-Dickstein, Schoenholz 107 10° 10° 10° 10
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Scales in NN dynamics

Hierarchical spectrum in NTK — EFT (coll. variable) approach promising

» Diagonalise NTK (®y1k) NN-update equation:

® Dense
Convolutional

f(D) = —n diag(hy, ..., i) L/(D)

* Largest changes in modes with largest eigenvalues.
* Hierarchical spectrum in NTK, conseguences: 10° -
 Effectively dynamics take place in lower-dimensional ~ |

subspace. cf. Gur-Ari, Roberts, Dyer 2018 ® oo ..
 There are few “collective” variables in NTK which _ P
determine the dynamics. Their time evolution is what we *eee, .
need to understand. 10" -

* Limit: adding more data does not change dynamics if
non-vanishing eigenvalues are not changed (naturally 0 2: 0 s 100 13: 10 1o-
cut-offs do appear analogy with effective field theories). Index

spectrum perspective: 2202.11104 (MLST) -




Variables to capture significant changes in spectrum
Overall magnitude of NTK (trace) and diversity entropy

* We see that the maximal eigenvalues of the NTK is very
dominant and was relevant in the mean evolutions of the

* The # of relevant modes differs between tasks. A variable which
Is iIndependent of the # of modes is the following entropy:

>

network:

A\

(here: 4. normalised eigenvalues of Oy\k)

How do these two variables correlate with neural network
behaviour? How do they evolve during training?

1r(Oyrk) = Z 4i R Amax

l

SN = — Z/filog/fi
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NTK evolution study
Collective variables

MNIST CNN

Activation Scaling (32, 2, x) a) ResNet, CIFAR10
3.0 - 108 4

* Universal behavior \\/ 32 1o]]
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A biased selection for BSM

* |LLMs for symbolic regression (formalism search): beyond next word
prediction

* Automated theorem proving: LEAN meets physics (HEPLean)
 Benchmark for symbolic regression: CY-metrics

* Flux-vacua: exploring BSM model spaces

* Improving diffusion models with RG

* Theory for ML.: collective variables of NTK



Thank you!

Advertisement: ML N Physics growing in Cambridge O Avnrinet | INOSYS” gl |

?

 DIS MPhil (1 year Master)

 DIS CDT (graduate school)

« MOU: Cambridge-Infosys Al Lab [postdocs, students]
 And a lot of cool people to work with...




