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‣ Usage of ML algorithm in HEP is not new...  
- BDTs as an Alternative to ANN for Particle Identification (MiniBooNE) (2004) [arXiv:physics/0408124] 
- Tagging heavy flavours with BDTs (2007) [arXiv:physics/0702041] 

‣ ...but, like everywhere else, since several years, ML is getting constantly 
increasing attention, diversity of applications and refined models 

ML in HEP
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Nature Machine Intelligence | Volume 5 | November 2023 | 1326–1335

Doubling rate of arXiv papers in 
categories of AI and ML per 
month is roughly 23 months

https://arxiv.org/abs/physics/0408124
https://arxiv.org/abs/physics/0702041
https://www.nature.com/articles/s42256-023-00735-0


‣ What is "realtime"? ➞ Online as opposed to Offline 

- Depending on the experimental environment "realtime" 
will have different meaning, hence different constraints:  

ML in realtime reconstruction
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A. Cerri



‣ Aiming to push our capabilities to search for BSM to the limit  

- Continuously increasing number of interactions per 
event ➞ more objects to reconstruct  
↳ Timing will help mitigating this effect 
↳ ML to further improve performances 

- Continuously increasing detector granularity ➞ 
more data to handle  
e.g. CMS High Granularity Calorimeter  
with ~6.5 M readout channels  

- Continuously improving ML model architectures 
Most of the ML developments done outside of HEP 
↳ need for a strong community of experts 
including engineers!   

Why using ML in realtime reconstruction
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Increasing interest in using ML @ reconstruction and / or trigger levels



‣ Realtime reconstruction is probably the area for ML application in HEP 
facing the most important challenges 
 

- (Very)-Low latency 
Capable to cope with the high rates  
ATLAS/CMS: 40 MHz @ L1 (FPGA, ASIC) | ~100 kHz @ HLT (GPU/CPU) 
LHCb:            30 MHz @ HLT (GPU/CPU) 

- Reliability/Flexibility 
Be able to quickly adapt to detector performance evolution  
(radiation damage, dead zones, ...) 

- Maintainability 
Ensure the underlying librairie / software can be maintained 
for relatively long period O(10 years) 

Stringent requirements
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No coming back 
from discarded 
data in triggers



‣ From development to running ML algorithms, many 
common tools currently used in HEP applications:  

- ML model librairies (current "standards")  

- Inference engines (GPU/CPU) 
 

- Running model in FPGA/ASIC 

Common tools
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S. Summer @ FDF24

TMVA/SOFIE

& more...

& more...

& more...

arxiv:1804.06913 arxiv:1612.07119

https://indico.cern.ch/event/1381060/contributions/5923280/attachments/2875746/5037307/conifer_fdf.pdf
https://arxiv.org/pdf/1804.06913
https://arxiv.org/pdf/1612.07119


‣ Current paradigm in industry, with the advent of LLMs, is toward 
continuously larger models (~1012 parameters in GPT4)  

Common challenges
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Parameters in notable artificial intelligence systems
Parameters are variables in an AI system whose values are adjusted during training to establish how input data
gets transformed into the desired output; for example, the connec>on weights in an ar>ficial neural network.
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Realtime requires to be more subtle to cope with limited device sizes

but...



‣ Two main approaches to cope with online devices requirements while 
maintaining a satisfactory level of performances: 

Common challenges
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QuantizationPruning

ar
xi
v:
15
06
.0
26
26

ar
xi
v:
20
06
.1
01
59

- Reduce number of "nodes" and/or "links", 
typically by setting small weights to zero  

- Multiplications by 0 can be completely 
removed from FPGA design

- Generally, performing quantisation-aware 
training achieves better performance  

- Particularly well suited for FPGA  
(large gain in the multiplier units)

https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2006.10159


Online ML @ LHC
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From D. Rankin (FastML for Science Conference 2024)

A selection of ML applications, in operation or 
in development, for online reconstruction  

(very much non exhaustive!)

https://indico.cern.ch/event/1387540/contributions/5964010/
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From D. Rankin (FastML for Science Conference 2024)

Online ML @ LHC

A selection of ML applications, in operation or 
in development, for online reconstruction  

(very much non exhaustive!)

https://indico.cern.ch/event/1387540/contributions/5964010/


‣ Large amount of data to store 

- Major upgrade during LS2  
➞ In Run3 reading full detector @ 50kHz in Pb-Pb collisions with 
~3.5 TB/s mostly from TPC (~99% of raw data) 

- Tracking from clusters (number of clusters ≈ stored data size)  
➞ reducing the amount of saved clusters while maintaining good 
tracking performances?  

- Promising studies for cluster classification using DNN online (GPU farm)  
➞ different architectures studied (fully connected, 2D or 3D CNN)

DNN for online clusterisation
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‣ Large amount of data to store 

DNN for online clusterisation
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C. Sonnabend's @ CHEP24

⊕

NN provides good estimate of local 
momentum vector, useful for track seeding

Successfully rejects clusters that are not used in tracking 
➞ potential reduction of effective data-size by ~20%  

while maintaining / or even improving tracking performance!

https://indico.cern.ch/event/1338689/contributions/6015422/


‣ For ATLAS calorimeter in HL-LHC  

- Liquid argon (LAr) calorimeter readout electronics 
replaced ➞ FPGAs to compute the energy deposited in 
the calo  

- Overlapping pulses difficult for heuristic algorithm 
due to distorted pulse shapes ➞ Can a NN running in 
the FPGA improve performances ?   

DNN in FPGA
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Comput.Softw.Big Sci. 5 (2021) 1, 19 

https://link.springer.com/article/10.1007/s41781-021-00066-y


‣ For ATLAS calorimeter in HL-LHC  

- Signal efficiency & resolution improved when using DNN 
(further improvements needed to match FPGA requirements) 

DNN in FPGA

Simon Akar 15Realtime reconstruction  |  ML4Jets 2024

Comput.Softw.Big Sci. 5 (2021) 1, 19 

https://link.springer.com/article/10.1007/s41781-021-00066-y


‣ For ATLAS calorimeter in HL-LHC  
Recent work on RNN optimisation for inference on Stratix10 from Intel 

- Detailed quantisation studies 
truncation(TRN) vs rounding (RND) at 
different steps 

- Using multiplexing 
384 channels/FPGA ➞ 28 instances of the 
RNN @ 560 MHz with a multiplexing of 14 
and a latency of 65 clock cycles (116ns) 

- Common High level synthesis (HLS) 
language not sufficient to meet FPGA 
requirements 
fine optimisation possible with Very 
High-Speed Integrated Circuit Hardware 
Description Language (VHDL) 

DNN in FPGA
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G. Aad et al 2023 JINST 18 P05017

https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017
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From D. Rankin (FastML for Science Conference 2024)

Online ML @ LHC

A selection of ML applications, in operation or 
in development, for online reconstruction  

(very much non exhaustive!)

https://indico.cern.ch/event/1387540/contributions/5964010/


‣ For ATLAS ITk in HL-LHC:  
<µ> ~ 200 ➞ ~ 300k hits/evt 

- Perform tracking using GNN model  

- Perform tracking using GNN model  
was demonstrated to achieve similar 
performances than heuristic algorithm

From hits to tracks
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ATL-SOFT-PROC-2023-047

J. Stark @ EuCAIFCon24

https://cds.cern.ch/record/2882507/files/ATL-SOFT-PROC-2023-047.pdf
https://indico.nikhef.nl/event/4875/contributions/20268/attachments/8247/11756/Stark_GNNtracking__EuCAIFCon2024.pdf


‣ For ATLAS ITk in HL-LHC: GNN inference in GPU/CPU 

- <µ> ~ 200 ➞ ~ 300k hits/evt ➞ fully connected graph ~ O(1011) edges 

- Recent optimisations 

From hits to tracks
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 i.e. Track building

A. Lazar @ CHEP24
ATL-PHYS-PUB-2024-018

https://indico.cern.ch/event/1338689/contributions/6011080/attachments/2953359/5192415/Lazar%20CHEP24%20Computing%2010-24.pdf
https://cds.cern.ch/record/2914282/files/ATL-PHYS-PUB-2024-018.pdf


‣ For ATLAS ITk in HL-LHC: GNN inference in FPGA 

- Benefit from potential heterogeneous online computing 
farm for the ATLAS Event Filter at HL-LHC 

- Preliminary standalone implementations of FPGA 
algorithms for graph construction and segmentation 

From hits to tracks
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S. Dittmeier @ CHEP24

Detector 
regionalisation to 

reduces graph sizes 
by factor 100 

https://indico.cern.ch/event/1338689/contributions/6015383/attachments/2951232/5187787/202410_CHEP_GNN_final.pdf


‣ Similar approach studied in LHCb: 

- Since Run3, LHCb benefits from full 
software trigger performing partial 
event reconstruction & coarse selection 
and running on a farm of 500 GPUs 
NVIDIA RTX A5000   

- GNN-based tracking (ETX4VELO) has 
been demonstrated to outperform 
heuristic algorithm  
physics performance in a low-pT 
environment with special care for 
electrons (challenging due to material 
interaction) 

From hits to tracks
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F. Giasemis @ ICHEP24A. Correia @ CTD23

https://indico.cern.ch/event/1291157/contributions/5889611/
https://indico.cern.ch/event/1252748/contributions/5521484/attachments/2731094/4748485/etx4velo_ctd2023.pdf


‣ GNN-based tracking in LHCb: 

- Recent studies towards a realistic algorithm ➞ high throughput required     

- Tested two inference engines 

- Dedicated pipeline steps 
directly  implemented in 
CUDA 
↳ kNN  
↳ Connected components 

- Ongoing pipeline 
optimisation as well as  
quantisation 

From hits to tracks

Simon Akar 22Realtime reconstruction  |  ML4Jets 2024

arXiv:2407.12119

https://arxiv.org/pdf/2407.12119


‣ PV finding with a hybrid model: 

- Originally developed in LHCb, 
extended toward ATLAS   

- Hybrid model: Fully Connected + UNet 

- Inputs : Tracks parameters  
Target : Gaussians with heights and 
widths reflect the expected PV 
resolutions 

From tracks to Primary Vertex (PV)
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POCA 
 9 params/track 

max(N tracks)=250

6 Fully Connected 
layers building  

(8 x 100) output 
channels  
x (40/evt)

UNet layers summing the 8 
contributions per bin to construct 

final predicted histogram

100-bin hist 
as output 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⊕



‣ PV finding with a hybrid model: 

From tracks to Primary Vertex (PV)
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- Iterative design improvement with 
increased performance 

- Pruning & reduced precision studies 
towards speeding up the inference, for 
application in HLT1 (next step) 

- Proof-of-concept without hyper parameter 
optimisation  
↳ 2x better vertex resolution 
↳ Similar efficiency and false positive rates

arXiv:2407.12119 ATL-PHYS-PUB-2023-011

https://arxiv.org/pdf/2407.12119
https://cds.cern.ch/record/2858348


‣ PV finding with a hybrid model: 

- Recent alternative approach using GNN model  
(based on ETX4VELO) 

↳ track ↔ PV association by construction 
↳ improved physics performance 

From tracks to Primary Vertex (PV)
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LHCb run 3 simulation 
~5.5 visible PVs per 
  beam crossing

S.A. @ EuCAIFCon24

https://indico.nikhef.nl/event/4875/contributions/20317/attachments/8200/11960/PVFinder_EuCAIFCon24.pdf


‣ PV finding with a hybrid model: 

- Recent alternative approach using GNN model  
(based on ETX4VELO) 

↳ track ↔ PV association by construction 
↳ improved physics performance 

From tracks to Primary Vertex (PV)
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LHCb run 3 simulation 
~5.5 visible PVs per 
  beam crossing

↳ GNN and hybrid model (trained on 
same input data and features) 
learned different representations    

S.A. @ EuCAIFCon24

https://indico.nikhef.nl/event/4875/contributions/20317/attachments/8200/11960/PVFinder_EuCAIFCon24.pdf
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From D. Rankin (FastML for Science Conference 2024)

Online ML @ LHC

A selection of ML applications, in operation or 
in development, for online reconstruction  

(very much non exhaustive!)

https://indico.cern.ch/event/1387540/contributions/5964010/


‣ Flavour jet tagging: 

- Steady progress over the years for heavy-flavour tagging 

Classifying jets
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CMS-DP-2024-066

Enhanced sensitivity to HH → 4b  
(as well as many other modes)

CMS-DP-2023-050

https://cds.cern.ch/record/2904702
https://cds.cern.ch/record/2868787/files/DP2023_050.pdf


‣ Flavour jet tagging: 

- Recent models (GNN or Transformer) enable  
s-jet (pioneer) as well as 𝜏-tagging (improved) 

- Transformer model appears to be much more computationally efficient:  
~7 improvement in inference speed from (larger) ParticleNet to (smaller) UParT 

Classifying jets
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CMS-DP-2024-066

https://cds.cern.ch/record/2904702


‣ Trigger algorithms require:  

- Robustness  
against detector instabilities and 
simulation inaccuracies 
↳ weight-normalisation scheme 
during training 

- Monotonicity  
in certain features for out-of-
distribution 
↳ addition of a residual connection to 
the network 
 
Monotonic Lipschitz neural 
networks impose desired constraints 
in the behaviour of the network by 
construction

Lipschitz neural networks
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arXiv:2112.00038

https://arxiv.org/pdf/2112.00038


‣ Currently in LHCb's trigger:  

- Topological triggers in HLT2  

↳ Monotonicity imposed in the  
IP-χ2 and the pT 

↳ Enhanced sensitivity to long-
lived candidates 

- Electron ID at the

Lipschitz neural networks
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arXiv:2312.14265

LHCB-FIGURE-2024-003

- Electron ID at the HLT1 (GPU)  

↳ Large improvement with respect 
to the conventional (not ML based) 
algorithm 

https://arxiv.org/pdf/2312.14265
https://cds.cern.ch/record/2897528
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From D. Rankin (FastML for Science Conference 2024)

Online ML @ LHC

A selection of ML applications, in operation or 
in development, for online reconstruction  

(very much non exhaustive!)

https://indico.cern.ch/event/1387540/contributions/5964010/


‣ One-go inclusive multi-signal reconstruction + pileup suppression,  
for optimal event filtering 
- Based on three sequential GNN modules 

Deep-learning based Full Event Interpretation
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Comput Softw Big Sci 7, 12 (2023)

Powerful event-filtering irrespectively of the particle multiplicity, 
as found in inclusive b-hadron simulation.

https://link.springer.com/article/10.1007/s41781-023-00107-8


‣ One-go inclusive multi-signal reconstruction + pileup suppression,  
for optimal event filtering 
- Recent improvements to model inference 

seconds/evt on CPU with first prototype 

Deep-learning based Full Event Interpretation
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Comput Softw Big Sci 7, 12 (2023)

• Full inference pipeline in C++  
LCAI GNN converted using TMVA::SOFIE 

• Replacement of Node and Edge Pruning 
steps (NP & EP) with BDTs 

• Overall timing now dominated by LCAI 
(ongoing optimisation of this step) 

F.L. Souza De Almeida @ ACAT24

https://link.springer.com/article/10.1007/s41781-023-00107-8
https://indico.cern.ch/event/1330797/contributions/5796657/attachments/2818149/4920485/ACAT_2024_FL_v5.pdf


‣ AXOL1TL:  

- Variational Auto-encoder (VAE) based algorithm to select anomalous 
(NP?) events in real-time in L1 physics trigger (40 MHz) 

- FPGA integration through hls4ml+vivado toolchain 

- Running in safe mode and deployed in the Global Trigger Test 
Crate in 2023 

- Integrated into L1 in 2024 

Anomaly detection
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N. Zipper @ FalstML24CMS-DP-2023-079 CMS-DP-2024-059

Network preferentially 
identifies large 
multiplicity events, 
potentially large gains in 
new physics acceptance

https://indico.cern.ch/event/1387540/contributions/6153423/attachments/2948406/5192995/FASTML_2024_Talk_Noah_zipper.pdf
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf
https://cds.cern.ch/record/2904695/files/DP2024_059.pdf


Common challenges
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Efficient and sustainable exploitation of ML presents challenges at various steps 
Common solutions among CERN collaborations is paramount!

➤

➤
➤

➤

Training

Inference

Maintenance & 
Preservation

Integration



‣ ML is developing at an incredible pace   

Common challenges
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arXiv:2407.12119

Efficient ML integration into reconstruction requires very specific domain knowledge  
Need for permanent engineers positions  

State-of-the-art new 
model architectures 
(GNN, transformers) 

already in use in 2024 

https://arxiv.org/pdf/2407.12119


‣ Increasing state-of-the-art ML algorithms in reconstruction 

- Offline ML techniques are shifting toward online applications to increase physics 
reach, but ultimately detector capabilities will drive are ability to perform good physics   

- Increasing focus on long-term maintainability of ML solutions and 
development of common pipelines 

‣ Infrastructure & technical expertise will be key  

- Centralised training infrastructure  

- Support for heterogeneous architectures 

- On-chip inference optimisation 

- Maintain and develop collaboration with industry

Final remarks
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