Gamma-ray spectrometry of fission fragments : ML analysis of multi-dimensional spectra

Mattéo Ballu

CEA-IRFU, DPhN

November 7, 2024

[Gamma spectroscopy and nuclear fission: a crash course](#page-1-0)

[Automatic analysis tool based on ML](#page-10-0)

[Uncertainties quantification](#page-24-0)

Gamma rays and the nuclear fission process

Gamma rays and the nuclear fission process

- prompt gamma rays emitted by fission fragments
- delayed gamma rays emitted during beta decay

Gamma rays and the nuclear fission process

- prompt gamma rays emitted by fission fragments
- delayed gamma rays emitted during beta decay

Interest of gamma-ray spectroscopy

- **Probe the intrinsic properties of** the fragments
- Compare the desexcitation process with simulation
- Nuclear data

The FIPPS spectrometer

Figure: 8 of the 16 germanium spectrometers

The neutron source

▶ nuclear reactor located at Laue-Langevin Institute (ILL)

The *active* **target** [\(Kandzia et al., 2020\)](#page-30-0)

Uranium 235 diluted in a scintillating liquid **Interest** : gamma-rays emitted after a fission can be discriminated

The detection system [\(Michelagnoli et al., 2018\)](#page-30-1)

Composed of two parts :

- ▶ 16 high-purity germanium clover detectors (HPGe)
- ▶ Photo-multiplier : collect the light produced at the target

Figure: Measure of gamma rays in coincidence

Figure: Zoom of the coincidence matrix on the region that corresponds to the detection of 2 gamma rays following the beta decay of $^{132}\mathrm{Sn}$

Goal

Extract the intensity of one or several peaks on a given region

Goal

Extract the intensity of one or several peaks on a given region

Current analysis method

- gating, background subtraction and projection to work with 1D-histograms
- $\blacktriangleright \chi^2$ minimization fitting procedure

Goal

Extract the intensity of one or several peaks on a given region

Current analysis method

- \triangleright gating, background subtraction and projection to work with 1D-histograms
- $\blacktriangleright \chi^2$ minimization fitting procedure

Better approach : fit directly the matrix

but :

- required complex fit model (designed *by-hand*)
- required a good first guess of the parameters

An automatic (or at least semi-automatic) procedure would be welcomed !

[Gamma spectroscopy and nuclear fission: a crash course](#page-1-0)

[Automatic analysis tool based on ML](#page-10-0)

[Uncertainties quantification](#page-24-0)

DATA

- ▶ training, testing, evaluating : **?**
- ▶ benchmarking : simulated data from GEANT4 simulation
- comparison with classic fit methods : real data from calibration source (^{152}Eu)

DATA

- ▶ training, testing, evaluating : **?**
- **benchmarking : simulated data from GEANT4 simulation**
- comparison with classic fit methods : real data from calibration source (^{152}Eu)

Architectures

CNN but which type ?

DATA

- ▶ training, testing, evaluating : **?**
- **benchmarking : simulated data from GEANT4 simulation**
- comparison with classic fit methods : real data from calibration source (^{152}Eu)

Architectures

CNN but which type ?

The rest

- what about uncertainty quantification ? and how to deal with the uncertainty in the input histograms ?
- how can we introduce prior knowledge in the analysis?

Requirements

- \blacktriangleright closely imitate experimental data
- ▶ cover the *space* of possible histograms

Example of a synthetic 2d-histogram

Requirements

- closely imitate experimental data
- cover the *space* of possible histograms

Figure: Example of a synthetic 2D-histogram

Example of a synthetic 2d-histogram

The architectures : 3 flavors

The architectures : 3 flavors

The architectures : 3 flavors

The architectures : did you say attention ?

- training on 2 million histograms
- 10 epochs
- Adam and cyclic LR scheduling
- weighted loss function:

$$
\mathcal{L} = \alpha \mathcal{L}_P(y, \hat{y}) + (1 - \alpha) \mathcal{L}_Z(\hat{y})
$$

target is > 0

$$
\blacktriangleright \mathcal{L}_P = \mathcal{L}_Z = \text{MSE}, \, \alpha = 0.8
$$

- training on 2 million histograms
- 10 epochs
- Adam and cyclic LR scheduling
- weighted loss function:

$$
\mathcal{L} = \alpha \mathcal{L}_P(y, \hat{y}) + (1 - \alpha) \mathcal{L}_Z(\hat{y})
$$

target is > 0
target is 0

$$
\blacktriangleright \mathcal{L}_P = \mathcal{L}_Z = \text{MSE}, \, \alpha = 0.8
$$

[Gamma spectroscopy and nuclear fission: a crash course](#page-1-0)

[Automatic analysis tool based on ML](#page-10-0)

[Uncertainties quantification](#page-24-0)

input histogram

What has be done so far

- ▶ synthetic dataset
- implementation of 3 architectures
- **first characterization**

What's next ?

- ▶ model uncertainty
- comparison to classic fit method
- \blacktriangleright application to the real data
- F. Kandzia, G. Belier, C. Michelagnoli, J. Aupiais, M. Barani, J. Dudouet, C. E. Düllmann, Ł. Iskra, M. Jentschel, Y. Kim, et al. Development of a liquid scintillator based active fission target for fipps. *The European Physical Journal A*, 56(8):207, 2020.
- C. Michelagnoli, A. Blanc, E. Ruiz-Martinez, A. Chebboubi, H. Faust, E. Froidefond, G. Kessedjian, M. Jentschel, U. Köster, P. Mutti, et al. Fipps (fission product prompt γ -ray spectrometer) and its first experimental campaign. In *EPJ Web of Conferences*, volume 193, page 04009. EDP Sciences, 2018.