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Physics Institute at University of Bonn
over 280 members in 28 working groups, plus users from related Physics institutes
and with HTC workloads
Biggest particle accelerator run by a German university (‘ELSA’, 164.4 m
circumference) with two experiments (� 50 people)
Groups from:

particle physics: ATLAS, Belle II, COMPASS/AMBER, Alice, LHCb, . . .
hadron physics
detector development
photonics
theory groups
economics

Extremely diverse requirements on software environments & job resources.

since 2017: HTCondor with interactive-first concept
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‘Interactive First’
Scientific software tends to require more and more dependencies (user-defined
software stacks)
) often via containers, Python environments, CVMFS trees,. . .
Users do not want to hassle with the setup on their desktop, on which they prefer
to use a modern OS
) Decent versions of IDEs, graphics editors, browsers etc.

Solutions
Two talks will highlight our approaches:

Oliver: SSH into containers on Batch resources and JupyterHub on Batch
resources
Myself: Using an IDE to SSH into containers on Batch resources
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Why Visual Studio Code?

Gained a lot of popularity over the last years among our users
(Probable) reasons for its popularity:

Syntax highlighting for most widely spread coding languages
Easy to install extensions ) easily customisable
Brings own ‘terminal’ where you can run your code without leaving the IDE

Goal: offer a way to develop code with VS Code while being able to test it in the
Batch environment
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Why Visual Studio Code?
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What do we want to achieve?

Key questions
Where to best run VS Code?
Inside/outside the job?
How to prevent long-running editing
sessions that might go stale and block
ressources?
How to get the user’s code into these
jobs?

Key requirements
Need answers that result in a workflow
which feels as ‘natural’ as possible
As little administrative maintenance as
possible
We need some kind of monitoring
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Our approach

Make use of VS Code’s ‘Remote SSH’-Plugin
Start an ‘interactive’ batch job from your IDE
Feels like SSH-ing to another host

This way we do not need to install VS Code on Worker Nodes
Binaries built by Microsoft are not distributable (licensing)
We cannot use VS Codium because we need Microsoft’s ‘Remote SSH’-Plugin

Everything is set up on the client’s side
What do we actually need for this approach?

A new job flavor to set defaults, constraints and for monitoring
A custom SSH executable to use from VS Code
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Custom SSH executable

VS Code’s ‘Remote SSH’-Plugin expects an SSH executable
We need to ‘emulate’ such an executable
Within this executable we need to start and connect to a batch job

General idea:
Write a Python executable
Use HTCondor’s Python API to submit and connect to a batch job
Allow only one Editing job per submit host

Need to take care to handle options passed to condor_ssh_to_job

Need to wrap input / output while job is in queue and not yet started
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Custom SSH executable

VS Code
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Seeing it in action
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Seeing it in action
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Seeing it in action
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Known issues / caveats

Since the jobs are not actual interactive jobs, they will not terminate when exiting
VS Code
Users can still place their code on the cluster’s file system, causing degraded
performance
Users need to take active care of securing code changes, the job’s HOME (i.e.
working directory) is not persistent
Custom SSH configs can cause issues, see this upstream issue
Microsoft might push automatic updates resulting in the need for a different config

Already observed with an update on August 8th

26/ 30

https://github.com/microsoft/vscode/issues/212685


Introduction Setup Experiences Conclusions Observed usage

Feedback and monitoring

Quite positive feedback by users
Some hiccups during first setups, resulted in extended FAQs / Troubleshooting
notes
Well received after rolling this out into production
Jobs run within a new job flavor for easier monitoring

Easier monitoring with dedicated job flavor
Allows us to set some defaults and enforce limits for these jobs
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Feedback and monitoring – Editing jobs

sent out mail
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Feedback and monitoring – All interactive jobs
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Conclusions

‘Interactive first’ approach works very well for us!
Editing jobs via VS Code seem to be a nice addition to this approach
You can make use of our VS Code integration in federated environments
Code for custom SSH executable is publicly available on GitHub

Thank you!
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Thank you

for your attention!


	Introduction
	Introduction
	The IDE

	Setup
	Key Concepts
	Implementation and Challenges

	Experiences
	Observed usage

	Conclusions
	Conclusions

	Appendix

