
Introduction Setup Experiences Conclusions

Integrating an IDE with HTCondor
With the example of Visual Studio Code

Oliver Freyermuth, Michael Hübner

University of Bonn
freyermuth@physik.uni-bonn.de,michael.huebner@uni-bonn.de

26th September, 2024

1/ 30

mailto:freyermuth@physik.uni-bonn.de,michael.huebner@uni-bonn.de


Introduction Setup Experiences Conclusions Introduction The IDE

Physics Institute at University of Bonn
over 280 members in 28 working groups, plus users from related Physics institutes
and with HTC workloads
Biggest particle accelerator run by a German university (‘ELSA’, 164.4 m
circumference) with two experiments (� 50 people)
Groups from:

particle physics: ATLAS, Belle II, COMPASS/AMBER, Alice, LHCb, . . .
hadron physics
detector development
photonics
theory groups
economics

Extremely diverse requirements on software environments & job resources.

since 2017: HTCondor with interactive-first concept

2/ 30



Introduction Setup Experiences Conclusions Introduction The IDE

‘Interactive First’
Scientific software tends to require more and more dependencies (user-defined
software stacks)
) often via containers, Python environments, CVMFS trees,. . .
Users do not want to hassle with the setup on their desktop, on which they prefer
to use a modern OS
) Decent versions of IDEs, graphics editors, browsers etc.

Solutions
Two talks will highlight our approaches:

Oliver: SSH into containers on Batch resources and JupyterHub on Batch
resources
Myself: Using an IDE to SSH into containers on Batch resources

3/ 30



Introduction Setup Experiences Conclusions Introduction The IDE

Why Visual Studio Code?

Gained a lot of popularity over the last years among our users
(Probable) reasons for its popularity:

Syntax highlighting for most widely spread coding languages
Easy to install extensions ) easily customisable
Brings own ‘terminal’ where you can run your code without leaving the IDE

Goal: offer a way to develop code with VS Code while being able to test it in the
Batch environment

4/ 30



Introduction Setup Experiences Conclusions Introduction The IDE

Why Visual Studio Code?

5/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

What do we want to achieve?

Key questions
Where to best run VS Code?
Inside/outside the job?
How to prevent long-running editing
sessions that might go stale and block
ressources?
How to get the user’s code into these
jobs?

Key requirements
Need answers that result in a workflow
which feels as ‘natural’ as possible
As little administrative maintenance as
possible
We need some kind of monitoring

6/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Our approach

Make use of VS Code’s ‘Remote SSH’-Plugin
Start an ‘interactive’ batch job from your IDE
Feels like SSH-ing to another host

This way we do not need to install VS Code on Worker Nodes
Binaries built by Microsoft are not distributable (licensing)
We cannot use VS Codium because we need Microsoft’s ‘Remote SSH’-Plugin

Everything is set up on the client’s side
What do we actually need for this approach?

A new job flavor to set defaults, constraints and for monitoring
A custom SSH executable to use from VS Code

7/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Custom SSH executable

VS Code’s ‘Remote SSH’-Plugin expects an SSH executable
We need to ‘emulate’ such an executable
Within this executable we need to start and connect to a batch job

General idea:
Write a Python executable
Use HTCondor’s Python API to submit and connect to a batch job
Allow only one Editing job per submit host

Need to take care to handle options passed to condor_ssh_to_job

Need to wrap input / output while job is in queue and not yet started

8/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Custom SSH executable

VS Code

Job
(Worker Node)

Scheduler

SSH Exec.
SSH to job

Poll queueQueue job

Reserve slot

1

23

4

5...x

x+1

9/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

10/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

11/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

12/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

13/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

14/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

15/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

16/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

17/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

18/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

19/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

20/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

21/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

22/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

23/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

24/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Seeing it in action

25/ 30



Introduction Setup Experiences Conclusions Key Concepts Implementation and Challenges

Known issues / caveats

Since the jobs are not actual interactive jobs, they will not terminate when exiting
VS Code
Users can still place their code on the cluster’s file system, causing degraded
performance
Users need to take active care of securing code changes, the job’s HOME (i.e.
working directory) is not persistent
Custom SSH configs can cause issues, see this upstream issue
Microsoft might push automatic updates resulting in the need for a different config

Already observed with an update on August 8th

26/ 30

https://github.com/microsoft/vscode/issues/212685


Introduction Setup Experiences Conclusions Observed usage

Feedback and monitoring

Quite positive feedback by users
Some hiccups during first setups, resulted in extended FAQs / Troubleshooting
notes
Well received after rolling this out into production
Jobs run within a new job flavor for easier monitoring

Easier monitoring with dedicated job flavor
Allows us to set some defaults and enforce limits for these jobs

27/ 30



Introduction Setup Experiences Conclusions Observed usage

Feedback and monitoring – Editing jobs

sent out mail

we
ek

en
d

we
ek

en
d

28/ 30



Introduction Setup Experiences Conclusions Observed usage

Feedback and monitoring – All interactive jobs

29/ 30



Introduction Setup Experiences Conclusions Conclusions

Conclusions

‘Interactive first’ approach works very well for us!
Editing jobs via VS Code seem to be a nice addition to this approach
You can make use of our VS Code integration in federated environments
Code for custom SSH executable is publicly available on GitHub

Thank you!

30/ 30

https://github.com/unibonn/htcondor-ide-tools


Thank you

for your attention!


	Introduction
	Introduction
	The IDE

	Setup
	Key Concepts
	Implementation and Challenges

	Experiences
	Observed usage

	Conclusions
	Conclusions

	Appendix

