| Didn't Know DAGMan
Could Do That!?

Expanded DAGMan Functionality
By: Cole Bollig

Software Developer for CHTC
European HTCondor Workshop 2024

DAGMan Introductory Material

* Previous Tutorials/Presentations
« HTCondor Week 2022 DAGMan Introduction Tutorial
« HTCondor Week 2014 Advance DAGMan Tutorial
« HTCondor Week 2014 Introductory DAGMan Tutorial

« DAGMan Documentation
« HTCondor DAGMan Documentation

« Example DAGMan Tutorial
o https://github.com/OSGConnect/tutorial-dagman-intermediate

Cole Bollig - HTCSS Developer CHTC ngwgrs]une Ur PATh 9/23/24

https://www.youtube.com/watch?v=OuIBf6x24r0&ab_channel=CenterforHighThroughputComputing
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/HTCondor_and_Workflows_Advanced.html
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/Intro_To_Workflows_DAGMan.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html
https://github.com/OSGConnect/tutorial-dagman-intermediate

Quick Refresher

« DAGMan is a Directed Acyclic Graph (DAG) Manager that is
used to help automate a workflow of jobs.

« A DAG is comprised of Nodes and Dependencies.
« A Job is the core of a DAG Node
« DAGMan makes as much forward progress as possible

Simple DAG visualized

simple.dag G
JOB A jobl.sub

JOB B job2.sub

PARENT A CHILD B e

cHrc HIConddr paTh

What Is a Node?

* A node Is comprised of three parts Node

1. PRE Script: Runs before placing
the job list to an AP

2. List of Jobs: DAGMan requires all
jobs in list to be successful

3. POST Script: Runs after all
associated jobs leave the AP

PRE Script

List of Jobs

e All scripts run on the submit host and POST Script

not the Execution Point (EP).

Important Knowledge

« Submitting a DAG to HTCondor produces an HTCondor
scheduler universe job that executes a DAGMan process.

Lots of files produced:
* Informational DAG files
« *.dagman.out = DAG progress/error output
* *.nodes.log = Collective job event log (Heart of DAGMan)

* *.metrics = JSON formatted DAG information
« DAGMan job files

e *.condor.sub =Submit File
* *.dagman.log = Job Log

e *lib.err = Job Error

e *lib.out = Job Output

cHre HCondd' path

See a DAG’s Status via htcondor dag status

colebollig@Coles-MacBook-Pro % htcondor dag status 454
DAG 454 [sample.dag] has been running for 09:13:45
DAG has submitted 8 job(s), of which:

1 is submitted and waiting for resources.

1 is running.

5 have completed.

1 has failed.

DAG contains 11 node(s) total, of which:
[#] 4 have completed.
[=] 4 are running: 1 pre-script, 2 jobs, 1 post-script.
['l 2 will never run.
['] 1 has failed.
DAG had at least one node fail. Only 72.73% of the DAG can complete.
[R] DAG is 36.36% complete.

cHic HTCondd path

Software Suite

Apply Modifiers to All Nodes

 The following DAG commands ALL NODES Keyword

can be applied to every node In N

a DAG In one line: sample.dag
 ABORT-DAG-ON JOB TEST-0 job0.sub
« CATEGORY JOB TEST-1 job1.sub
* PRE_SKIP Note: Does not apply to JOB TEST-998 job998.sub
 PRIORITY Service and Final Nodes. JOB TEST-999 j0b999.sub
* RETRY SCRIPT POST ALL_NODES check.sh
« SCRIPT

* VARS .
DAGMan ALL NODES Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#all-nodes-option

Pass DAG/Node Information to Scripts

Inform DAGMan of DAG/Node
Information to pass as
arguments to a node script.

verify-success.dag

JOB A A.sub

SCRIPT A POST check_exit.sh SNODE SRETRY SRETURN

Note: Some Script macros only
apply to the POST Script

CHIC HTCOI’]\U/F

Software

Suite

DAG Information

Counts of nodes per status (Done, Failed,
etc.)

DAG Status

DAGManJobld

Node Information

Node name

Retries (current retry # and the max)

The job ID

Node Success/Failure up till this point
Job exit codes

Number of associated jobs

Return value of the node’s PRE Script

DAGMan Script Macro Documentation

PATh

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html#special-script-argument-macros

Capture Script Output

» Specify a file to capture the

STDOUT and/or the STDERR of a S ena
node’s script JOB A A.sub

* Multiple scripts can write to the SCRIPT DEBUG script.out ALL POST A check.sh $NODE
same file because all output is script.out

Captu red by DAG M an an d Writte N | N *#* Node=A Type=POST Status=0 Completion=1726165734 Cmd="check.sh A’

Args [‘check.sh’, ‘A’]

a. Slngle erte Xerify:ng.output.s exist...
-analysis.txt exists
» Debug file includes divider line el e
containing information about the A s sl
script execution (including the exact
command DAGMan executed) DAGMan Script Debug Documenation

cHre HCondd' path

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html#debug-file

Skip a Node Based on the PRE Script

« Mark a node as done based on
the return code of a PRE Script.

» Use the PRE_SKIP command

« Don’t submit any jobs or execute the
POST Script

 Node Is successful

» Useful for skipping nodes when
re-running a DAG

DAGMan PRE SKIP Command Documentation

skip-node.dag

JOB A simulation.sub
JOB B analysis.sub
JOB C aggregation.sub

SCRIPT A PRE check_simulation_ran.sh
PRE_SKIP A 2

check_simulation_ran.sh

#!/bin/bash

if [-e “complex-data.sim”]; then
exit 2

else
exit O

fi

cHre HCondd' path

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#pre-skip

Using DAG VARS In IF Conditionals

* The use the VARS command is
very common for sharing a submit
description (job template)

« Use PREPEND keyword to add the
macro(s) before description parsing

« Use APPEND keyword to add the
macro(s) after description parsing

« No PREPEND or APPEND specified
will add VARS according to
DAGMAN _ DEFAULT APPEND VAR
S

DAGMan PREPEND/APPEND VARS Documentation

CHIC HIConddr

Software Suite

skip-node.dag

JOB A generic.sub
JOB B generic.sub

VARS A PREPEND src=“./work/source”

generic.sub

executable = ./physics.sh
arguments = -a heavy -| —src S(SOURCE)

if defined src
SOURCE = S(src)
else
SOURCE = /home/default/source
endif
gueue

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#prepend-or-append-variables-to-node

Save a DAGs Progress

e Saves the current progress of the DAG comparable to a video
game Save flle Example Workflow Visualized

sample.dag <I
Simulation 2

SAVE_POINT_FILE S1
SAVE_POINT_FILE S2 post_simulationl.save

SAVE_POINT_FILE S3 ./post_simulation2.save Analysis Part 1
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save

Analysis Part 2

* File is similar too a rescue file Setup
« Written the first time a specified node runs Q
Simulation 1

DAGMan Save Point File Documentation

cHic HCondd pah

Software Suite

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#dag-save-point-files

Save a DAGs Progress cont.

* Where are the save files written?

* Nodes S1 & S2 write their save files to a new subdirectory called
save files in the DAG’s working directory.

* Nodes S3 & S4 write their save files to the specified path relative to the
DAG’s working directory.

» S1 save will be written to a file named S1-sample.dag.save

saved.dag condor_submit_dag —load_save [save file] saved.dag

If given a path, then condor_submit_dag will
use that path to look for the save file.
Otherwise DAGMan looks in the save_files
sub-directory for the save files.

SAVE_POINT_FILE S1

SAVE_POINT_FILE S2 post_simulationl.save
SAVE_POINT_FILE S3 ./post_simulation2.save
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save

cHre HCondd' path

Stop a DAG Early

« ABORT-DAG-ON Command

* Notifies DAG to write a rescue file
and abort the workflow early

e Specify an exit code that triggers
the DAG abort

» Checked with each part of the node
(PRE/JOB/POST)

» Specify DAG exit code
(Success/Failure)

* FINAL node is still run

DAGMan ABORT-DAG-ON Command

Cole Bollig - HTCSS Developer CHTC sssss 9, rs]ne

Abort DAG
if Analysis
Successful

9/23/24

13

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#stopping-the-dag-on-node-failure

Visualize a DAG

« DAGMan can produce a DOT file
to easily help visualize a DAG
utilizing the AT&T Research
Labs graphviz package

sample.dag

DOT dag.dot

dot -Tps dag.dot -o dag.ps

DAGMan Dot Files Documentation

HIC NV
Cole Bollig - HTCSS Developer CHTC (aar]une Ur

RANDOMIZER (I)

ANALYSIS_START (I)
ANALYSIS_ALPHA () ANALYSIS BETA(I)
ANALYSIS_END (I}

DAGMan Job status at Sat Jul 8 22:29:16 2023

PATh 9/23/24

14

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#visualizing-dags

DAGMan has special Node Types

Provisioner Node

» Good for setting up unigue _ |
Beg\%urces to be used by nodes in a

 Always starts prior to other nodes

* Runs for a set amount of time
defined in the job itself

« Can only have one provisioner node

simple.dag

JOB A job1.sub QUANTUM
JOB B job2.sub

PROVISIONER QUANTUM cloud.sub

DAGMan Provisioner Node

cHrc HIConddr paTh

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#provisioner-node

Service Node

Flask App

The ‘sidecar node’ that runs along side the DAG and
perform tasks

Begin running at the beginning of the DAG but isn'’t
guaranteed to run before other nodes.

Best effort. If the submit fails, the DAG will carry on.

Is managed by DAGMan such that DAGMan will
remove all service nodes before exiting

sample.dag
1
JOB A job1.sub I -
JOB B job2.sub ¥ -

Webpage showing
DAG Progress and
Monitoring

sample.dag.nodes.log

JOBY job3.sub

JOB Z job4.sub Full of all the job
events for the DAG.

SERVICE MONITOR flask.sub

DAGMan Service Node

cHrc HICondSr path

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#service-node

Final Node

« Always the last node to run
whether the DAG has
aborted or completed
successfully

» Good for cleanup and
verifying output of previous
node

e Can only be one final node In
a DAG

DAGMan Final Node

diamond.dag

JOB A jobl.sub
JOB B job2.sub
JOB Cjob3.sub
JOB D job4.sub

FINAL END cleanup.sub

Diamond DAG visualized

cHre HCondd' path

DAG Succes

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#final-node

A DAG can be comprised of DAGS

DAGMan Composing DAG of DAG's Documentation

cHrc HICondSr path

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html

sample.dag

SUBDAGS e
SUBDAG EXTERNAL SIM simulation.dag

o JOB C job.sub
* To the parent DAG it Is just a

single node SCRIPT POST SIM ...
 Can use RETRY RETRY 10 SIM
 Can add PRE & POST Scripts

e Submits as another DAG to the
AP such that has its own

PARENT A CHILD SIM
PARENT SIM CHILD C

- oy

DAGMan process and output 4 NON——— ,
files. II _ _ . SUBDAG That runs and manages its !

» DAG file and nodes don’t need to M
%ﬂ% at submission time of parent - -

» Good for running sub-workflows
where the number of jobs is not
predefined

cHre HCondd' path

Example: DAG that runs N SUBDAGs

This is an example diagram to show a
user how to set up a DAG that
creates and unknown number of
DAGs and subsequently runs them.

Cole Bollig - HTCSS Developer

Make scripts

and part2.sub

Make n DAGs

DAG-1
DAG-3

Makes primary
subdag

DAG-2

DAG-n

Main DAG

Runs Part 1 as job
2. Runs Part 2 As job
|__—2a. Runs post

/ script

3. Runs Primary

Subdag
AN

AN

Primary Subdag

#Primary Subdag .dag file

SUBDAG EXTERNAL A DAG-1
SUBDAG EXTERNAL B DAG-2
SUBDAG EXTERNAL C DAG-3

SUBDAG EXTERNAL * DAG-n

created DAGs
as subdags

DAG-3
Runs all on fly é/

i DAG

-N

CHIC

HIConddr

Software Suite

PATh

9/23/24

21

DAG
SPLICE

 All spliced DAGs have their nodes
merged into the parent DAG

 Allows easy reusability

« Low strain on the Access Point (AP)

. f_\ll spliced DAG files must exist at submit
ime

* Pre and Post scripts cannot run on
splices as a whole

« Splices can not use the RETRY
capability

JOB A job.sub
SPLICE X cross.dag
sample.dag |JOB Cjob.sub

PARENT A CHILD X
PARENT X CHILD C

CHTIC HTCOﬂd\U/I’

Software Suite

Questions?

PRE Script Example

diamond.dag verify.sh =
Node A Pre Script
JOB A jobl.sub Super cool script that \ S >
JOB B job2.sub verifies all input files for RHER TR > fails making the
JOB C job3.sub job are at least 10mb. node as a whole
JOB D job4.sub fail.

SCRIPT PRE A verify.sh

Node A Pre Script
» succeeds, and the Node

PARENT A CHILD B C Input files >= 10mb
PARENT B C CHILD D

A job gets submitted.

Another possibility would be to have the script
manipulate Input Files (Rename, Move, Condense)

cHre HCondd' path

POST Script Example

diamond.dag loop.sh

JOB A job1.sub #Takes job exit code & e Causes Node C loop

JOB B!obz.sub #node retry attempt and run 5 times.

JOB C job3.sub : S

JOB D job4.sub if (job exit == 0) * Looping behavior can
if (retry >= 4) { exit 0 } be added to SUBDAG

SCRIPT POST C loop.sh SRETURN SRETRY else {exit 1} workflows too.

RETRY C 5 UNLESS-EXIT 2 else
exit 2

PARENT ACHILD B C
PARENT B C CHILD D Other possibilities for Post Scripts:

* \Verify output

* Fake a node success even though node job
failed

* Produce afile that is to be used later by the
DAG (job submit file, script, a subdag)

cHic HTCondd path

Software Suite

