
I Didn’t Know DAGMan
Could Do That!?

Expanded DAGMan Functionality

By: Cole Bollig

Software Developer for CHTC

European HTCondor Workshop 2024

DAGMan Introductory Material

• Previous Tutorials/Presentations
• HTCondor Week 2022 DAGMan Introduction Tutorial

• HTCondor Week 2014 Advance DAGMan Tutorial

• HTCondor Week 2014 Introductory DAGMan Tutorial

• DAGMan Documentation
• HTCondor DAGMan Documentation

• Example DAGMan Tutorial
• https://github.com/OSGConnect/tutorial-dagman-intermediate

9/23/24Cole Bollig - HTCSS Developer 1

https://www.youtube.com/watch?v=OuIBf6x24r0&ab_channel=CenterforHighThroughputComputing
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/HTCondor_and_Workflows_Advanced.html
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/Intro_To_Workflows_DAGMan.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html
https://github.com/OSGConnect/tutorial-dagman-intermediate

Quick Refresher
• DAGMan is a Directed Acyclic Graph (DAG) Manager that is

used to help automate a workflow of jobs.

• A DAG is comprised of Nodes and Dependencies.

• A Job is the core of a DAG Node

• DAGMan makes as much forward progress as possible

JOB A job1.sub
JOB B job2.sub

PARENT A CHILD B

A

B

simple.dag

Simple DAG visualized

9/23/24Cole Bollig - HTCSS Developer 2

What is a Node?

• A node is comprised of three parts
1. PRE Script: Runs before placing

the job list to an AP
2. List of Jobs: DAGMan requires all

jobs in list to be successful
3. POST Script: Runs after all

associated jobs leave the AP

• All scripts run on the submit host and
not the Execution Point (EP).

PRE Script

List of Jobs

POST Script

Node

9/23/24Cole Bollig - HTCSS Developer 3

Important Knowledge

• Submitting a DAG to HTCondor produces an HTCondor
scheduler universe job that executes a DAGMan process.

Lots of files produced:
• Informational DAG files

• *.dagman.out
• *.nodes.log
• *.metrics

• DAGMan job files
• *.condor.sub
• *.dagman.log
• *.lib.err
• *.lib.out

= DAG progress/error output
= Collective job event log (Heart of DAGMan)
= JSON formatted DAG information

= Submit File
= Job Log
= Job Error
= Job Output

9/23/24Cole Bollig - HTCSS Developer 4

See a DAG’s Status via htcondor dag status

colebollig@Coles-MacBook-Pro % htcondor dag status 454

DAG 454 [sample.dag] has been running for 09:13:45

DAG has submitted 8 job(s), of which:

1 is submitted and waiting for resources.

1 is running.

5 have completed.

1 has failed.

DAG contains 11 node(s) total, of which:

[#] 4 have completed.

[=] 4 are running: 1 pre-script, 2 jobs, 1 post-script.

[!] 2 will never run.

[!] 1 has failed.

DAG had at least one node fail. Only 72.73% of the DAG can complete.

[##############################==============================!!!!!!!!!!!!!!!!!!!!!!!] DAG is 36.36% complete.

9/23/24Cole Bollig - HTCSS Developer 5

Apply Modifiers to All Nodes

• The following DAG commands
can be applied to every node in
a DAG in one line:

• ABORT-DAG-ON

• CATEGORY

• PRE_SKIP

• PRIORITY

• RETRY

• SCRIPT

• VARS

ALL_NODES Keyword

JOB TEST-0 job0.sub
JOB TEST-1 job1.sub
…
JOB TEST-998 job998.sub
JOB TEST-999 job999.sub

SCRIPT POST ALL_NODES check.sh

sample.dag

DAGMan ALL_NODES Documentation

Note: Does not apply to
Service and Final Nodes.

9/23/24Cole Bollig - HTCSS Developer 6

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#all-nodes-option

Pass DAG/Node Information to Scripts

Inform DAGMan of DAG/Node
information to pass as
arguments to a node script.

JOB A A.sub
SCRIPT A POST check_exit.sh $NODE $RETRY $RETURN

verify-success.dag

• DAG Information
• Counts of nodes per status (Done, Failed,

etc.)
• DAG Status
• DAGManJobId

• Node Information
• Node name
• Retries (current retry # and the max)
• The job ID
• Node Success/Failure up till this point
• Job exit codes
• Number of associated jobs
• Return value of the node’s PRE ScriptNote: Some Script macros only

apply to the POST Script

DAGMan Script Macro Documentation

9/23/24Cole Bollig - HTCSS Developer 7

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html#special-script-argument-macros

Capture Script Output

• Specify a file to capture the
STDOUT and/or the STDERR of a
node’s script

• Multiple scripts can write to the
same file because all output is
captured by DAGMan and written in
a single write

• Debug file includes divider line
containing information about the
script execution (including the exact
command DAGMan executed)

9/23/24Cole Bollig - HTCSS Developer 8

JOB A A.sub

SCRIPT DEBUG script.out ALL POST A check.sh $NODE

debug.dag

*** Node=A Type=POST Status=0 Completion=1726165734 Cmd=‘check.sh A’
Args [‘check.sh’, ‘A’]
Verifying outputs exist…
A-analysis.txt exists
A-simulation.txt exists
A-aggregate.txt exists
A-quatum.txt exists
All files exists!

script.out

DAGMan Script Debug Documenation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html#debug-file

Skip a Node Based on the PRE Script

• Mark a node as done based on
the return code of a PRE Script.

• Use the PRE_SKIP command
• Don’t submit any jobs or execute the

POST Script
• Node is successful

• Useful for skipping nodes when
re-running a DAG

JOB A simulation.sub
JOB B analysis.sub
JOB C aggregation.sub

SCRIPT A PRE check_simulation_ran.sh
PRE_SKIP A 2

skip-node.dag

#!/bin/bash
if [-e “complex-data.sim”]; then

exit 2
else

exit 0
fi

check_simulation_ran.sh

DAGMan PRE_SKIP Command Documentation

9/23/24Cole Bollig - HTCSS Developer 9

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#pre-skip

Using DAG VARS in IF Conditionals

• The use the VARS command is
very common for sharing a submit
description (job template)

• Use PREPEND keyword to add the
macro(s) before description parsing

• Use APPEND keyword to add the
macro(s) after description parsing

• No PREPEND or APPEND specified
will add VARS according to
DAGMAN_DEFAULT_APPEND_VAR
S

JOB A generic.sub
JOB B generic.sub

VARS A PREPEND src=“./work/source”

skip-node.dag

executable = ./physics.sh
arguments = -a heavy -l –src $(SOURCE)
…
if defined src

SOURCE = $(src)
else

SOURCE = /home/default/source
endif
queue

generic.sub

DAGMan PREPEND/APPEND VARS Documentation

9/23/24Cole Bollig - HTCSS Developer 10

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#prepend-or-append-variables-to-node

Save a DAGs Progress
• Saves the current progress of the DAG comparable to a video

game save file
• File is similar too a rescue file

• Written the first time a specified node runs

…
SAVE_POINT_FILE S1
SAVE_POINT_FILE S2 post_simulation1.save
SAVE_POINT_FILE S3 ./post_simulation2.save
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save
…

sample.dag

Setup

Simulation 1

Analysis Part 1

Analysis Part 2

S2

S1

S3

S4

Simulation 2

Example Workflow Visualized

DAGMan Save Point File Documentation

9/23/24Cole Bollig - HTCSS Developer 11

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#dag-save-point-files

Save a DAGs Progress cont.

• Where are the save files written?
• Nodes S1 & S2 write their save files to a new subdirectory called

save_files in the DAG’s working directory.
• Nodes S3 & S4 write their save files to the specified path relative to the

DAG’s working directory.

• S1 save will be written to a file named S1-sample.dag.save

condor_submit_dag –load_save [save_file] saved.dag

If given a path, then condor_submit_dag will
use that path to look for the save file.
Otherwise DAGMan looks in the save_files
sub-directory for the save files.

…
SAVE_POINT_FILE S1
SAVE_POINT_FILE S2 post_simulation1.save
SAVE_POINT_FILE S3 ./post_simulation2.save
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save
…

saved.dag

9/23/24Cole Bollig - HTCSS Developer 12

Stop a DAG Early

• ABORT-DAG-ON Command
• Notifies DAG to write a rescue file

and abort the workflow early

• Specify an exit code that triggers
the DAG abort

• Checked with each part of the node
(PRE/JOB/POST)

• Specify DAG exit code
(Success/Failure)

• FINAL node is still run

Setup

Train
Epoch

Train
Epoch

Train
Epoch

Train
Epoch

Analysis

Analysis

Analysis

Analysis

Abort DAG
if Analysis
Successful

9/23/24Cole Bollig - HTCSS Developer 13

DAGMan ABORT-DAG-ON Command

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html#stopping-the-dag-on-node-failure

Visualize a DAG
• DAGMan can produce a DOT file

to easily help visualize a DAG
utilizing the AT&T Research
Labs graphviz package

…
DOT dag.dot
…

sample.dag

dot -Tps dag.dot -o dag.ps

DAGMan Dot Files Documentation

9/23/24Cole Bollig - HTCSS Developer 14

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#visualizing-dags

DAGMan has special Node Types

9/23/24Cole Bollig - HTCSS Developer 15

Provisioner Node
• Good for setting up unique

resources to be used by nodes in a
DAG

• Always starts prior to other nodes

• Runs for a set amount of time
defined in the job itself

• Can only have one provisioner node

JOB A job1.sub
JOB B job2.sub

PROVISIONER QUANTUM cloud.sub
…

simple.dag

VM with
Quantum

Computing and
GPUs

Collector

QUANTUM

9/23/24Cole Bollig - HTCSS Developer 16

DAGMan Provisioner Node

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#provisioner-node

Service Node
• The ‘sidecar node’ that runs along side the DAG and

perform tasks

• Begin running at the beginning of the DAG but isn’t
guaranteed to run before other nodes.

• Best effort. If the submit fails, the DAG will carry on.

• Is managed by DAGMan such that DAGMan will
remove all service nodes before exiting

JOB A job1.sub
JOB B job2.sub
…
JOB Y job3.sub
JOB Z job4.sub

SERVICE MONITOR flask.sub
…

sample.dag

MONITOR

sample.dag.nodes.log

Full of all the job
events for the DAG.

Flask App

Webpage showing
DAG Progress and

Monitoring

9/23/24Cole Bollig - HTCSS Developer 17

DAGMan Service Node

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#service-node

Final Node

• Always the last node to run
whether the DAG has
aborted or completed
successfully

• Good for cleanup and
verifying output of previous
node

• Can only be one final node in
a DAG

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

FINAL END cleanup.sub
…

diamond.dag

A

B C

D

Diamond DAG visualized

END

DAG Aborting

DAG Success

9/23/24Cole Bollig - HTCSS Developer 18

DAGMan Final Node

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html#final-node

A DAG can be comprised of DAGs

9/23/24Cole Bollig - HTCSS Developer 19

DAGMan Composing DAG of DAG's Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html

SUBDAGs
• To the parent DAG it is just a

single node
• Can use RETRY
• Can add PRE & POST Scripts

• Submits as another DAG to the
AP such that has its own
DAGMan process and output
files.

• DAG file and nodes don’t need to
exist at submission time of parent
DAG

• Good for running sub-workflows
where the number of jobs is not
predefined

JOB A job.sub
SUBDAG EXTERNAL SIM simulation.dag
JOB C job.sub

SCRIPT POST SIM …
RETRY 10 SIM

PARENT A CHILD SIM
PARENT SIM CHILD C

A

SIM

C

SUBDAG That runs and manages its
own DAG.

sample.dag

9/23/24Cole Bollig - HTCSS Developer 20

Example: DAG that runs N SUBDAGs

This is an example diagram to show a
user how to set up a DAG that
creates and unknown number of
DAGs and subsequently runs them.

9/23/24Cole Bollig - HTCSS Developer 21

DAG
SPLICE
• All spliced DAGs have their nodes

merged into the parent DAG

• Allows easy reusability

• Low strain on the Access Point (AP)

• All spliced DAG files must exist at submit
time

• Pre and Post scripts cannot run on
splices as a whole

• Splices can not use the RETRY
capability

A

C

SPLICE X

X+A X+B

X+C

X+EX+D

JOB A job.sub
SPLICE X cross.dag
JOB C job.sub

PARENT A CHILD X
PARENT X CHILD C

sample.dag

9/23/24Cole Bollig - HTCSS Developer 22

Questions?

9/23/24Cole Bollig - HTCSS Developer 23

PRE Script Example

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SCRIPT PRE A verify.sh

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

Super cool script that
verifies all input files for
job are at least 10mb.

verify.sh
Node A Pre Script
fails making the
node as a whole
fail.

Node A Pre Script
succeeds, and the Node
A job gets submitted.

Input files < 10mb

Input files >= 10mb

Another possibility would be to have the script
manipulate Input Files (Rename, Move, Condense)

9/23/24Cole Bollig - HTCSS Developer 24

POST Script Example

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SCRIPT POST C loop.sh $RETURN $RETRY
RETRY C 5 UNLESS-EXIT 2

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

#Takes job exit code &
#node retry attempt

if (job exit == 0)
if (retry >= 4) { exit 0 }
else { exit 1 }

else
exit 2

loop.sh

• Causes Node C loop
and run 5 times.

• Looping behavior can
be added to SUBDAG
workflows too.

Other possibilities for Post Scripts:
• Verify output
• Fake a node success even though node job

failed
• Produce a file that is to be used later by the

DAG (job submit file, script, a subdag)

9/23/24Cole Bollig - HTCSS Developer 25

