
Brian Bockelman, 25 September 2024

Some friendly advice, some discussion

HTC: Dealing with Data
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Why does HTCSS care about data?

Why is this even a talk?

= ?
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Why?  This is why…

=
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It only gets worse…

=AP EP

?data?
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‣ What are the important parts of “dealing with data”?

‣ Understanding data dependencies between tasks.

‣ Detecting failures & handling retries.

‣ Managing finite resources (storage, I/O).

‣ And yes, moving data quickly.

‣ What’s perhaps the least of these?  Data transfer rates!

‣ What is a user or site to do?

‣ Power through with hardware: Pay enough money so you can assume the hardware never fails and is never 

the bottleneck.

‣ Do it yourself: Provide all the functionality yourself (or use a workload manager layered on top of HTCSS).

‣ Let the HTCondor Software Suite help!

Dealing with Data
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‣ HTCSS needs to manage your data to manage your workloads:

‣ I/O capacity: Limit the I/O load (MB/s, IOPS) experienced by the remote service.  Managed via limiting the 

transfer concurrency.

‣ Can consider read and write activity separately.

‣ Retry policy: What to do when a transfer fails?

‣ Should we consider it permanent or transient?

‣ Run the job at a different site?

‣ Have the AP start avoiding the EP in general?

‣ Portability: Run the job at a wider range of resources, not just local to the AP/EP’s site.

‣ Can you skip this?  Sure!  But then you’re in charge…

Managing workloads = managing data
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HTCondor breaks the job into stages

transfer_input_files = input1.dat, 

input2.dat

executable = my_processor.py

transfer_output_files = complete.dat

If HTCondor manages the I/O, it can delineate these stages!
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By declaring your jobs’ inputs and  outputs to HTCondor, you:

‣ Allow HTCondor to manage the  movement of files.

‣ Allow HTCondor to prepare your job  environment.

‣ HTCondor knows to  not even start your job if the input is  

unavailable.

‣ Can make your job  portable to other infrastructures.

In the simplest - and most common -  case, HTCondor will also 

perform the file  transfer.

8

HTCondor Submit Files

universe = vanilla

executable = science.exe

arguments = $(Process)

transfer_input_file = \

input.txt

output = science.out

error = science.err

log = science.log

queue



All about CEDAR
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CEDAR is the built-in protocol HTCondor uses 

when the AP is copying objects.
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‣ CEDAR is HTCondor’s internal binary protocol for transferring files.

‣ Uses the TCP connection established between client and server:

‣ E.g., between AP and EP.

‣ Can use HTCondor’s connection broker to reverse connections if server is behind a firewall.

‣ Can only read/write local files to the AP/EP.

‣ Effective: minimal use of round-trip blocking during transfers: can move a directory of small files, even with 

large network latencies.

‣ No optimizations around object reuse: no caching if the same file is moved repeatedly.

‣ “Plays well” with firewalls.

‣ Effective, simple, no setup required: the baseline for users.

10

CEDAR Transfers



Subtitle

morgridge.org

‣ Before any transfer starts, the source side enters a transfer queue at the AP.

‣ This allows the AP to understand the concurrency of currently-running transfers.

‣ The queue entered defaults to the owner’s HTCondor identity.

‣ When it is ready to start a new transfer, the AP will round-robin between queues.

‣ Transfer queue is a ClassAd expression: can be based on the EP’s sit ename.

‣ The AP records the time spent in I/O and adjusts the concurrency based on a high-/low-watermark algorithm:

‣ Number of transfers is slowly increased until a high-water load limit is reached.

‣ The concurrency is decreased until the low-water limit is reached.
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Resource management: CEDAR

AP

A Queue

B Queue

EP

Xfer Xfer Xfer

Xfer Xfer Xfer Xfer
EPXfer

Xfer

Xfer

Xfer
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‣ During the course of HTCondor 23, we’ve tried to cleanup CEDAR errors messages:

‣ Fewer repetitions.

‣ User-centric, not admin-centric.

12

Working on error messages
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‣ If you use the -spool option, HTCondor will make a copy  of 

your input files to a private directory. This allows you to  make 

changes locally while your jobs are running.

‣ The stream_output submit file command will cause  

HTCondor to stream output back to the submit host while  the 

job is running. Useful - but use sparingly (consider  condor_tail 

or condor_ssh_to_job as well).

‣ max_transfer_output_mb allows you to put a  maximum cap 

on the data you transfer back; a useful  sanity check if your job 

produced 100GB when you  expected 100KB.

‣ encrypt_input_files allows you to force some files to  be 

encrypted in flight - even if HTCondor would not  otherwise do 

this.

‣ The transfer_output_remaps command allows you to  

provide arbitrary mappings from files in the job execute  

directory

Arcane Knowledge…

‣ MAX_CONCURRENT_UPLOADS / 

MAX_CONCURRENT_DOWNLOADS provide an 

absolute limit on the number of files  being transferred 

at a time

‣ FILE_TRANSFER_DISK_LOAD_THROTTLE will 

further lower the number of concurrent file transfers 

based on the I/O load  measured on the submit host’s 

storage.

‣ MAX_TRANSFER_OUTPUT_MB sets the  schedd-

wide default for maximum data  transfers per jobs 

(users can override).

‣ MAX_TRANSFER_QUEUE_AGE is the  maximum 

time, in seconds, that a transfer  is allowed to proceed 

before it is killed.

For Users: For Admins:



Delegated Transfers

Bringing your friends along for the ride…

AKA, “URL-Based Transfers”
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‣ Delegated transfers* are transfers that are initiated by HTCSS but performed by some other component.

‣ We typically call these “URL-based transfers” but I feel the fact they’re specified by URL secondary.

‣ There’s an enormous world of transfer tools and protocols out there.  Delegated transfers are how HTCSS taps 

into that for the input/output sandbox.

‣ Shipped with HTCSS:

‣ HTTP, FTP, HTTPS, DAVS, file (basically, anything that libcurl supports!)

‣ data:// - base64-encode the data in the URL itself.

‣ osdf:// (and soon, pelican:// !) – transfer with a data federation.

15

What are Delegated Transfers?

* Still searching for a good name here – suggestions 

welcome!
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Delegated Transfers

universe = vanilla

executable = science.exe

arguments = $(Process)  

transfer_input_file = \
https://example.co/input

output = science.out

error = science.err

log = science.log queue

https://example.co/input
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‣ Wait, why not call curl inside my job? I can do that!...

‣ As we say at CHTC, Miron has a lot of questions:

‣ Are you sure you call curl correctly?

‣ Did you pass the right headers to make caching work?

‣ Did you discover the right proxy?

‣ Did you set timeouts appropriately?

‣ Did you fine-tune your retry policy?

‣ When the transfer fails, is this reflected correctly in the job  status?

‣ If HTCondor doesn’t know about it, HTCondor can’t schedule it!

‣ Same as with normal file transfers, HTCondor can do the hard work  and (difficult) management if it is told what 

URLs are needed.

17

I can do that!
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‣ The world is a lot larger than the supported mechanisms that ship with HTCondor.

‣ Don’t see your preferred schema?  You can write your own plugin…

‣ “You” applies to both users and EP admins.

‣ The plugin must:

‣ Specify the schemes it supports (gs://, box://, gdrive://, etc).

‣ Take an input file describing a list of transfers to perform.

‣ (Actually perform the transfers, of course!)

‣ Produce an output file describing the results of the transfer.

‣ HTCSS will group the transfers so the plugin is invoked once per URL schema.

‣ Optimize to your heart’s content

18

Your own delegated transfers!
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‣ HTCSS now keeps statistics on these transfers.  You can see how many bytes were moved, how many files, 

number of successes.

‣ Also the file transfer stage is present in the job’s event log.

‣ CEDAR transfers are done first for the job input sandbox and last for the job output sandbox:

‣ Delegated transfers can rely on configuration sent via CEDAR; they can drop files that are returned via 

CEDAR.

‣ The s3:// URLs are special: instead of transferring the S3 credentials to the EP, it will automatically create a 

signed URL on the AP.  This https:// URL is then sent to the EP for transfer.

‣ The EP only receives a single URL, not your credentials!  Minimizes risk of a malicious EP.

19

Arcane Knowledge…
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‣ Originally all transfers for a job were done with an active token in the transfer queue.

‣ This made no sense: we are not managing the AP’s I/O resources while transferring with a 3 rd party!

‣ In 9.x, we changed this so no transfer tokens were held.

‣ Which also makes no sense!  That means delegated transfers are completely unmanaged.

‣ Soon-to-appear: the AP manages a separate queue for delegated transfers.

‣ Targeting services that AP has a close relationship with.

‣ Others (think AWS…) may not need to be managed by the AP.

20

Off into the future – Managing Delegated Transfers
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The Pelican plugin allows for reuse at the content distribution network.  More later today!

Example - Pelican

AP

EPObj

Origin

Cache

Obj EPObj Obj

Obj

Obj
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‣ “Well-hidden” in HTCSS is the shadow job hook.

‣ Arbitrary code invoked by the condor_shadow 

process before sending a job’s ClassAd to the 

condor_starter.

‣ Receives the shadow’s copy of the job ClassAd 

and any credentials for the job.

‣ Output is updates to the ClassAd.

‣ Opportunity: Can transform the input sandbox.

‣ Example: The Pelican shadow hook will examine 

large files, upload them to a local origin, and then 

instruct the starter to use the Pelican copy of the file.

Arcane Knowledge…

AP

Shadow

EP

Origin

Pelican 

Client

Starter

Pelican 

Hook
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Integration with the LotMan library (part of the Pelican Platform):

‣ LotMan performs accounting for storage.

‣ Finally (!) can ask HTCSS questions like “how much spool is Brian using?”

‣ Can ask jobs to provide estimates of input/output sandbox needs.

‣ Don’t schedule a job with 1TB output if the user doesn’t have 1TB of space allocated!

‣ First step in the ability to set policies for storage.

‣ As with I/O, users should not get a blank check for storage.

23

Coming up soon…
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Why do folks manage their own data?

‣ Data volume: The volume of data the job will read is larger than the local scratch space.

‣ Streaming / subsets: The application reads a small subset of the data and CEDAR moves the entire file.

‣ Unknown application dependencies: The user is utilizing a community-developed application and has little 

insight into what data is needed.

‣ Workflow engine assumptions: The user is running a workflow engine that assumes a shared filesystem.

Common Pitfalls / Challenges
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Why do folks manage their own data?

‣ Data volume: The volume of data the job will read is larger than the local scratch space.

‣ Approach: Consider splitting into smaller jobs, each with less data volume.

‣ Approach: Still declare dependencies, let HTCSS know the filesystem requirements. Can still use the 

policy/retry engine!

‣ Streaming / subsets: The application reads a small subset of the data while CEDAR moves the entire file.

‣ Approach: Move subsetting step into job creation time or an earlier node in DAG.

‣ Approach: Delegate subsetting into a custom transfer plugin.

‣ Unknown application dependencies: The user is utilizing a community-developed application and has little 

insight into what data is needed.

‣ Approach: Provide interactive host, run inside a container.

‣ Workflow engine assumptions: The user is running a workflow engine that assumes a shared filesystem.

‣ Approach: Search for a “AWS mode”; any HTCondor integration is more like AWS than SLURM.

Common Pitfalls: Approaches
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‣ Rely on HTCSS to manage your data and you get:

‣ Policy engine: Clear phases for transfer and ever-improving policies for failure.

‣ Capacity management: Concurrency limits in the AP and queue management implements management of 

the I/O capacity of the AP.

‣ Portability: Jobs are not tied to the local shared filesystem and can moved to anywhere!

‣ Using HTCSS relies on you building a knowledge of the data dependencies of your workload:

‣ This does not come “for free”: new users often struggle with understanding their workload.

‣ Worthwhile: good for the hygiene of the workload, opens doors with HTCondor!

Parting Thoughts



Questions?

This project is supported by the National Science Foundation 

under Cooperative Agreements OAC-2030508. Any opinions, 

findings, conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect 

the views of the National Science Foundation.
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