
Brian Bockelman, 25 September 2024

Some friendly advice, some discussion

HTC: Dealing with Data

Subtitle

morgridge.org
2

Why does HTCSS care about data?

Why is this even a talk?

= ?

Subtitle

morgridge.org

Why? This is why…

=

Subtitle

morgridge.org

It only gets worse…

=AP EP

?data?

Subtitle

morgridge.org

‣ What are the important parts of “dealing with data”?

‣ Understanding data dependencies between tasks.

‣ Detecting failures & handling retries.

‣ Managing finite resources (storage, I/O).

‣ And yes, moving data quickly.

‣ What’s perhaps the least of these? Data transfer rates!

‣ What is a user or site to do?

‣ Power through with hardware: Pay enough money so you can assume the hardware never fails and is never

the bottleneck.

‣ Do it yourself: Provide all the functionality yourself (or use a workload manager layered on top of HTCSS).

‣ Let the HTCondor Software Suite help!

Dealing with Data

Subtitle

morgridge.org

‣ HTCSS needs to manage your data to manage your workloads:

‣ I/O capacity: Limit the I/O load (MB/s, IOPS) experienced by the remote service. Managed via limiting the

transfer concurrency.

‣ Can consider read and write activity separately.

‣ Retry policy: What to do when a transfer fails?

‣ Should we consider it permanent or transient?

‣ Run the job at a different site?

‣ Have the AP start avoiding the EP in general?

‣ Portability: Run the job at a wider range of resources, not just local to the AP/EP’s site.

‣ Can you skip this? Sure! But then you’re in charge…

Managing workloads = managing data

Subtitle

morgridge.org
7

HTCondor breaks the job into stages

transfer_input_files = input1.dat,

input2.dat

executable = my_processor.py

transfer_output_files = complete.dat

If HTCondor manages the I/O, it can delineate these stages!

Subtitle

morgridge.org

By declaring your jobs’ inputs and outputs to HTCondor, you:

‣ Allow HTCondor to manage the movement of files.

‣ Allow HTCondor to prepare your job environment.

‣ HTCondor knows to not even start your job if the input is

unavailable.

‣ Can make your job portable to other infrastructures.

In the simplest - and most common - case, HTCondor will also

perform the file transfer.

8

HTCondor Submit Files

universe = vanilla

executable = science.exe

arguments = $(Process)

transfer_input_file = \

input.txt

output = science.out

error = science.err

log = science.log

queue

All about CEDAR

9

CEDAR is the built-in protocol HTCondor uses

when the AP is copying objects.

Subtitle

morgridge.org

‣ CEDAR is HTCondor’s internal binary protocol for transferring files.

‣ Uses the TCP connection established between client and server:

‣ E.g., between AP and EP.

‣ Can use HTCondor’s connection broker to reverse connections if server is behind a firewall.

‣ Can only read/write local files to the AP/EP.

‣ Effective: minimal use of round-trip blocking during transfers: can move a directory of small files, even with

large network latencies.

‣ No optimizations around object reuse: no caching if the same file is moved repeatedly.

‣ “Plays well” with firewalls.

‣ Effective, simple, no setup required: the baseline for users.

10

CEDAR Transfers

Subtitle

morgridge.org

‣ Before any transfer starts, the source side enters a transfer queue at the AP.

‣ This allows the AP to understand the concurrency of currently-running transfers.

‣ The queue entered defaults to the owner’s HTCondor identity.

‣ When it is ready to start a new transfer, the AP will round-robin between queues.

‣ Transfer queue is a ClassAd expression: can be based on the EP’s sit ename.

‣ The AP records the time spent in I/O and adjusts the concurrency based on a high-/low-watermark algorithm:

‣ Number of transfers is slowly increased until a high-water load limit is reached.

‣ The concurrency is decreased until the low-water limit is reached.

11

Resource management: CEDAR

AP

A Queue

B Queue

EP

Xfer Xfer Xfer

Xfer Xfer Xfer Xfer
EPXfer

Xfer

Xfer

Xfer

Subtitle

morgridge.org

‣ During the course of HTCondor 23, we’ve tried to cleanup CEDAR errors messages:

‣ Fewer repetitions.

‣ User-centric, not admin-centric.

12

Working on error messages

Subtitle

morgridge.org

‣ If you use the -spool option, HTCondor will make a copy of

your input files to a private directory. This allows you to make

changes locally while your jobs are running.

‣ The stream_output submit file command will cause

HTCondor to stream output back to the submit host while the

job is running. Useful - but use sparingly (consider condor_tail

or condor_ssh_to_job as well).

‣ max_transfer_output_mb allows you to put a maximum cap

on the data you transfer back; a useful sanity check if your job

produced 100GB when you expected 100KB.

‣ encrypt_input_files allows you to force some files to be

encrypted in flight - even if HTCondor would not otherwise do

this.

‣ The transfer_output_remaps command allows you to

provide arbitrary mappings from files in the job execute

directory

Arcane Knowledge…

‣ MAX_CONCURRENT_UPLOADS /

MAX_CONCURRENT_DOWNLOADS provide an

absolute limit on the number of files being transferred

at a time

‣ FILE_TRANSFER_DISK_LOAD_THROTTLE will

further lower the number of concurrent file transfers

based on the I/O load measured on the submit host’s

storage.

‣ MAX_TRANSFER_OUTPUT_MB sets the schedd-

wide default for maximum data transfers per jobs

(users can override).

‣ MAX_TRANSFER_QUEUE_AGE is the maximum

time, in seconds, that a transfer is allowed to proceed

before it is killed.

For Users: For Admins:

Delegated Transfers

Bringing your friends along for the ride…

AKA, “URL-Based Transfers”

Subtitle

morgridge.org

‣ Delegated transfers* are transfers that are initiated by HTCSS but performed by some other component.

‣ We typically call these “URL-based transfers” but I feel the fact they’re specified by URL secondary.

‣ There’s an enormous world of transfer tools and protocols out there. Delegated transfers are how HTCSS taps

into that for the input/output sandbox.

‣ Shipped with HTCSS:

‣ HTTP, FTP, HTTPS, DAVS, file (basically, anything that libcurl supports!)

‣ data:// - base64-encode the data in the URL itself.

‣ osdf:// (and soon, pelican:// !) – transfer with a data federation.

15

What are Delegated Transfers?

* Still searching for a good name here – suggestions

welcome!

Subtitle

morgridge.org
16

Delegated Transfers

universe = vanilla

executable = science.exe

arguments = $(Process)

transfer_input_file = \
https://example.co/input

output = science.out

error = science.err

log = science.log queue

https://example.co/input

Subtitle

morgridge.org

‣ Wait, why not call curl inside my job? I can do that!...

‣ As we say at CHTC, Miron has a lot of questions:

‣ Are you sure you call curl correctly?

‣ Did you pass the right headers to make caching work?

‣ Did you discover the right proxy?

‣ Did you set timeouts appropriately?

‣ Did you fine-tune your retry policy?

‣ When the transfer fails, is this reflected correctly in the job status?

‣ If HTCondor doesn’t know about it, HTCondor can’t schedule it!

‣ Same as with normal file transfers, HTCondor can do the hard work and (difficult) management if it is told what

URLs are needed.

17

I can do that!

Subtitle

morgridge.org

‣ The world is a lot larger than the supported mechanisms that ship with HTCondor.

‣ Don’t see your preferred schema? You can write your own plugin…

‣ “You” applies to both users and EP admins.

‣ The plugin must:

‣ Specify the schemes it supports (gs://, box://, gdrive://, etc).

‣ Take an input file describing a list of transfers to perform.

‣ (Actually perform the transfers, of course!)

‣ Produce an output file describing the results of the transfer.

‣ HTCSS will group the transfers so the plugin is invoked once per URL schema.

‣ Optimize to your heart’s content

18

Your own delegated transfers!

Subtitle

morgridge.org

‣ HTCSS now keeps statistics on these transfers. You can see how many bytes were moved, how many files,

number of successes.

‣ Also the file transfer stage is present in the job’s event log.

‣ CEDAR transfers are done first for the job input sandbox and last for the job output sandbox:

‣ Delegated transfers can rely on configuration sent via CEDAR; they can drop files that are returned via

CEDAR.

‣ The s3:// URLs are special: instead of transferring the S3 credentials to the EP, it will automatically create a

signed URL on the AP. This https:// URL is then sent to the EP for transfer.

‣ The EP only receives a single URL, not your credentials! Minimizes risk of a malicious EP.

19

Arcane Knowledge…

Subtitle

morgridge.org

‣ Originally all transfers for a job were done with an active token in the transfer queue.

‣ This made no sense: we are not managing the AP’s I/O resources while transferring with a 3 rd party!

‣ In 9.x, we changed this so no transfer tokens were held.

‣ Which also makes no sense! That means delegated transfers are completely unmanaged.

‣ Soon-to-appear: the AP manages a separate queue for delegated transfers.

‣ Targeting services that AP has a close relationship with.

‣ Others (think AWS…) may not need to be managed by the AP.

20

Off into the future – Managing Delegated Transfers

Subtitle

morgridge.org

The Pelican plugin allows for reuse at the content distribution network. More later today!

Example - Pelican

AP

EPObj

Origin

Cache

Obj EPObj Obj

Obj

Obj

Subtitle

morgridge.org

‣ “Well-hidden” in HTCSS is the shadow job hook.

‣ Arbitrary code invoked by the condor_shadow

process before sending a job’s ClassAd to the

condor_starter.

‣ Receives the shadow’s copy of the job ClassAd

and any credentials for the job.

‣ Output is updates to the ClassAd.

‣ Opportunity: Can transform the input sandbox.

‣ Example: The Pelican shadow hook will examine

large files, upload them to a local origin, and then

instruct the starter to use the Pelican copy of the file.

Arcane Knowledge…

AP

Shadow

EP

Origin

Pelican

Client

Starter

Pelican

Hook

Subtitle

morgridge.org

Integration with the LotMan library (part of the Pelican Platform):

‣ LotMan performs accounting for storage.

‣ Finally (!) can ask HTCSS questions like “how much spool is Brian using?”

‣ Can ask jobs to provide estimates of input/output sandbox needs.

‣ Don’t schedule a job with 1TB output if the user doesn’t have 1TB of space allocated!

‣ First step in the ability to set policies for storage.

‣ As with I/O, users should not get a blank check for storage.

23

Coming up soon…

Subtitle

morgridge.org

Why do folks manage their own data?

‣ Data volume: The volume of data the job will read is larger than the local scratch space.

‣ Streaming / subsets: The application reads a small subset of the data and CEDAR moves the entire file.

‣ Unknown application dependencies: The user is utilizing a community-developed application and has little

insight into what data is needed.

‣ Workflow engine assumptions: The user is running a workflow engine that assumes a shared filesystem.

Common Pitfalls / Challenges

Subtitle

morgridge.org

Why do folks manage their own data?

‣ Data volume: The volume of data the job will read is larger than the local scratch space.

‣ Approach: Consider splitting into smaller jobs, each with less data volume.

‣ Approach: Still declare dependencies, let HTCSS know the filesystem requirements. Can still use the

policy/retry engine!

‣ Streaming / subsets: The application reads a small subset of the data while CEDAR moves the entire file.

‣ Approach: Move subsetting step into job creation time or an earlier node in DAG.

‣ Approach: Delegate subsetting into a custom transfer plugin.

‣ Unknown application dependencies: The user is utilizing a community-developed application and has little

insight into what data is needed.

‣ Approach: Provide interactive host, run inside a container.

‣ Workflow engine assumptions: The user is running a workflow engine that assumes a shared filesystem.

‣ Approach: Search for a “AWS mode”; any HTCondor integration is more like AWS than SLURM.

Common Pitfalls: Approaches

Subtitle

morgridge.org

‣ Rely on HTCSS to manage your data and you get:

‣ Policy engine: Clear phases for transfer and ever-improving policies for failure.

‣ Capacity management: Concurrency limits in the AP and queue management implements management of

the I/O capacity of the AP.

‣ Portability: Jobs are not tied to the local shared filesystem and can moved to anywhere!

‣ Using HTCSS relies on you building a knowledge of the data dependencies of your workload:

‣ This does not come “for free”: new users often struggle with understanding their workload.

‣ Worthwhile: good for the hygiene of the workload, opens doors with HTCondor!

Parting Thoughts

Questions?

This project is supported by the National Science Foundation

under Cooperative Agreements OAC-2030508. Any opinions,

findings, conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

