
Brian Bockelman, 26 September 2024

“Putting jobs in a box”

Opportunities and Challenges
Courtesy Linux Cgroups Version 2

Subtitle

morgridge.org

‣ HTCSS has long searched for an ideal “box” to place jobs in:

‣ Manage finite resources (CPU, GPU, memory, disk, network).

‣ Recursive.

‣ Unprivileged.

‣ Unable to “break out”

‣ What do we mean by manage?

‣ Accurate account for & report usage.

‣ Prevent job from overrunning assigned resources

‣ Execute policy based on resource consumption.

‣ How to do this in Linux?

‣ Traditional Unix process management assumes well-behaved,

cooperative processes. If we make this assumption, then there’s no

problem to solve!

‣ HTCSS accumulated about 10 years of “tricks”, mostly involving

rooting around in /proc, secondary GIDs, environment variables.

Whole daemon for process tracking (condor_procd)!

Long Search for managing EP resources

Not close to our ideal box!

EP

GPU

CPU

Disk

Memory

Subtitle

morgridge.org

‣ The Linux kernel came up with the idea of “control groups”: a set of processes whose properties or resources

were managed by a kernel controller.

‣ The CPU controller manages the scheduler resources the processes receive.

‣ The memory controller manages the memory resource accounting.

‣ The freezer controller will deny any CPU scheduling to a group.

‣ This is Unix, I know this!

‣ Kernel decided to expose and manage cgroups via a filesystem interface.

‣ Want to add a thread to a cgroup? Write its PID into a file.

‣ Want to create a child group? `mkdir`

‣ Want to read a counter? `cat` the right file!

‣ Efforts began in 2006 and merged into Linux mainline in 2007.

Linux to the rescue!

/

system.slice

condor.service

http.service
slot1

slot2

Subtitle

morgridge.org

Ok, so we didn’t do a good job with git in 2011

commit 321489d95346fbaa3c0a2c9daf15df74aac9664c
Author: Brian Bockelman <bbockelm@cse.unl.edu>
Date: Thu May 5 10:13:46 2011 -0500

 ===GT=== #1831
 This is the final patch from Brian Bockelman which implements cgroups
 on linux for the condor_procd. In building the patch, I've found some
 build errors which I'll fix in subsequent patches.
 ===VersionHistory===
 When Condor can utilize the CGroup functionality in Linux, the accuracy
 of process tracking, accounting, and management can be made much
 more accurate.

4 years from mainline commit to HTCondor using it in production

Subtitle

morgridge.org

‣ How good are cgroups for our ideal box?

‣ Management: … mostly

‣ Unable to break out:

‣ Recursive:

‣ Unprivileged:

‣ Pitfalls:

‣ Doesn’t address disk or I/O management. See separate talk by Cole.

‣ Impractical to use recursively (as a nested job is unprivileged).

‣ Never implemented GPU management.

Some wins, some losses

After 13 years, mostly

“it just works”

https://indico.cern.ch/event/1386170/contributions/6127751/attachments/2934317/5153500/Managing-EP-disk-HTC-EU-24.pdf

Subtitle

morgridge.org

‣ Cgroups V1 was a great donation from Google and IBM to the Linux kernel.

‣ However, it was a first attempt and not everything was successful:

‣ Overly complex: Each thread can be in a separate control group.

‣ Overly complex: Each thread can be in a separate control group per controller.

‣ Overly complex: Threads are allowed to be in “internal nodes” in the cgroup hierarchy; assigning resources to

sibling is complicated & difficult to understand.

‣ Cruft: Inconsistent naming scheme within the mounted filesystem.

‣ Unpredictable: multiple writers to the same cgroup can cause unpredictable results.

Meanwhile, in Linux…

Subtitle

morgridge.org

‣ Cgroups V2 was added to the mainline kernel in 2014,

a decade ago.

‣ HTCSS added support this year – why a decade?

‣ Upgrading is harder than creating:

‣ Need to keep V1 and V2 working side-by-side.

‣ Will be like this for several years.

‣ Dropped libcgroup (dropped from RHEL9), switched

to interacting directly via the filesystem.

‣ Moved cgroup code from separate procd into the

HTCondor daemons.

‣ Making behavior consistent between V1 and V2.

‣ Esp. difficult in interpreting memory usage.

‣ Plus typical bug smashing!

Cgroups to the rescue … again?

Subtitle

morgridge.org

‣ The picture of multi-tenancy and GPUs is … ugly. Users can trivially stomp on each other’s running jobs

Over the hump: new features! GPUs

$ nvidia-smi

+---+

| NVIDIA-SMI 550.54.14 Driver Version: 550.54.14 CUDA Version: 12.4 |

|---+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===+========================+======================|

| 0 Tesla P100-PCIE-16GB On | 00000000:3B:00.0 Off | 0 |

| N/A 37C P0 33W / 250W | 1030MiB / 16384MiB | 1% Default |

| | | N/A |

+---+------------------------+----------------------+

| 1 Tesla P100-PCIE-16GB On | 00000000:D8:00.0 Off | 0 |

| N/A 33C P0 31W / 250W | 4496MiB / 16384MiB | 0% Default |

| | | N/A |

+---+------------------------+----------------------+

Any job can read OR WRITE to ANY gpu on the system!

Cause of crashes, hangs, incorrect data in CHTC, elsewhere!

Subtitle

morgridge.org

‣ The first thing HTCondor did was set the CUDA_VISIBLE_DEVICES environment variable, which hides a GPU

from the CUDA libraries.

‣ This worked until the first user copy/pasted CUDA_VISIBLE_DEVICES=0, thanks to Stack Overflow.

GPUs and HTCondor

$ export CUDA_VISIBLE_DEVICES=0

$ nvidia-smi

Fri Jul 5 12:21:43 2024

+---+

| NVIDIA-SMI 550.54.14 Driver Version: 550.54.14 CUDA Version: 12.4 |

|---+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===+========================+======================|

| 0 Tesla P100-PCIE-16GB On | 00000000:3B:00.0 Off | 0 |

| N/A 37C P0 33W / 250W | 1030MiB / 16384MiB | 1% Default |

| | | N/A |

+---+------------------------+----------------------+

Subtitle

morgridge.org

‣ Cgroups V2 has a new controller, the device controller, that allows HTCondor to install a small program that is

executed by the kernel when devices files are opened.

‣ HTCondor installs a program that returns “permission denied” if a job ever tries to open a GPU device that it

wasn’t assigned.

GPUs, HTCondor, and Cgroups

$ nvidia-smi

+---+

| NVIDIA-SMI 550.54.14 Driver Version: 550.54.14 CUDA Version: 12.4 |

|---+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===+========================+======================|

| 0 Tesla P100-PCIE-16GB On | 00000000:3B:00.0 Off | 0 |

| N/A 37C P0 33W / 250W | 1030MiB / 16384MiB | 1% Default |

| | | N/A |

+---+------------------------+----------------------+

Finally, isolation for GPUs.

Subtitle

morgridge.org

‣ Remember our properties of an “ideal box”? One missing

piece was “recursive”!

‣ In cgroups V2, it’s more practical to delegate (chown!) to

the job user.

‣ Hiccup: in Cgroups V2, tasks can only live in hierarchy

“leaf” nodes.

‣ Can’t simply chown the slot cgroup.

New features: Delegation

condor.service

htcondor

slot1

$ chown job_unix_user slot1

Subtitle

morgridge.org

Delegation – small tweak

‣ Instead, we create a deeper hierarchy and chown the

parent to the job’s unix user.

‣ Suddenly, the glidein can manage the cgroup hierarchy!

‣ We can start considering the matrix of local scheduler &

overlays, pushing delegation in as many cases as possible.

condor.service

htcondor

slot1.scope

slot1

subjob1

subjob2

$ chown job_unix_user slot1.scope
Local Batch HTCondor SLURM K8S HTCondor

Overlay HTCondor HTCondor HTCondor Alice Pilots

13
morgridge.org

Help us advocate to enabling
delegation on SLURM and K8S!

ALICE is doing this today !

with pilots over HTCondor (and SLURM)

Subtitle

morgridge.org

‣ The filesystem is a fine API for interacting with the kernel cgroups.

‣ However, systemd also has an API for managing cgroups.

‣ Currently, we tell systemd to delegate a cgroup to HTCondor - and be hands off.

‣ This means the various systemd tools do not have visibility into the HTCondor jobs.

‣ If we used systemd to launch create processes, we:

‣ Would benefit from systemd’s cgroup handling knowledge.

‣ Administrators would have visibility into what’s happening using the systemd toolset.

‣ Would open the door to restarting (upgrading?) the EP without losing running jobs.

Whither systemd?

What do you think?

Subtitle

morgridge.org

‣ For over a decade, cgroups have been essential to “building a better box” and managing jobs.

‣ We’re in the middle of a transition from V1 to V2

‣ Hopefully squashing the last few bugs! TBD…

‣ Cgroups V2 opens up some new doors:

‣ GPUs are finally managed! Combined with the LVM work … do we have all the resources managed?

‣ Can finally delegate and use cgroups from unprivileged EPs (glideins)!

Final thoughts

Help us spread use of

unprivileged cgroups!

Questions?

This project is supported by the National Science Foundation

under Cooperative Agreements OAC-2030508. Any opinions,

findings, conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Help us advocate to enabling delegation on SLURM and K8S! ALICE is doing this today ! with pilots over HTCondor (and SLURM)
	Slide 14
	Slide 15
	Slide 16

