
Pelican Introduction

Introducing the

The is a federated platform for
delivering datasets from repositories to

compute in an effective, scalable manner.

2

OSDF Integrates Independent Repositories
into a common fabric

• About a dozen
repositories
integrated already,
more on the way.

• Working to grow:
• clients,

• integrated
resources, and

• environments.

3

AWS
Open Data

DeltaAI

= existing integration

OSDF Architecture - Vision

Long-term vision:
We want OSDF to be an “all-science” CDN.

Requires:

• Connect many repositories to the
distribution fabric.

• Provide clients that enable as many use
cases.

And benefit from the network effects.

4

A bit on the distribution layer…

• Anyone can run a cache!
• However, the OSDF

centrally runs regional
caches, mostly at network
locations.

• Builds on top of a
distributed Kubernetes
cluster run by the National
Research Platform (NRP).
• Single, uniform interface to

run services across the
country.

• “Typical” cache hardware
is ~100GbE / 20TB NVMe.

The : Connecting your repository

The OSDF provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is
operated by

Using
hardware from

And integrates a wide
range of open science,

6
As part of the OSG Consortium’s Fabric of Services

OSDF & Pelican

• You may have seen prior
presentations about the
OSDF – it (or predecessors)
have existed for ~10 years.

• We split out the technology
powering the OSDF and
christened it the “Pelican
Platform”.
• Same components as before,

just integrated into a
standalone platform.

7

Software Service

The Pelican Project

The OSDF is operated by using hardware from and others.

Who develops the software?

The Pelican project (OAC-2331480) is a newly-funded, $7M/4-year
project with the following goals:

1. Strengthen and Advance the OSDF.

2. Expand the types of computing where OSDF is impactful.

3. Expand the science user communities.
• With a particular driver of the climate community.

8

by the numbers

Over the last 12
months, the OSDF

transferred

230PB &

125 req/s

Data used by

15 science

collaborations &

~120 OSPool

users

9

Example Daily Volume – June 2024

Note: individual experiments can still dominate a day’s activities.

How does the OSDF work?
A brief tour through the Pelican architecture as implemented by the OSDF.

11

OSDF in Practice

• Currently, the most common
client for the OSDF is the
OSPool.

• The OSPool is a distributed High
Throughput Computing service,
part of the OSG Consortium and
run by PATh.
• The OSPool is a distributed

HTCondor pool, run across ~60 US
sites, including 28 CC* awardees
(active + ‘alumni’).

12
Let’s run through a HTCondor Example

OSDF In Practice

• If HTCondor needs an object –
say, a container – for a job, the
first step is to start the OSDF
client.

• The OSDF client contacts the
manager, requesting to read
the object.

13

OSDF In Practice

• The manager determines a
nearby cache to serve the
object.
• Every location in the lower 48

states is within 500 miles from an
OSDF cache hosted by the NRP.

• If the object is in cache, it is
served to the client
immediately.
• Otherwise…

14

OSDF In Practice

• The cache contacts the origin
hosting the object.
• The object prefix is used as a

routing key to determine the
correct origin.

• The origin will read the object
from the underlying object
store.
• Typically, a filesystem – but

expanding to many dataset
repository types!

15

Architecture: Recap

• An origin service integrates the
object store into the OSDF in the
same way a CE integrates a batch
system into the OSPool. Interfaces
to move data and map
authorizations.

• The cache service stores and
forwards objects, providing
scalability to the data access.

• The manager selects a source/sink
of an object for clients and
maintains the namespace.

16

Zooming in –
Technical Components

Pelican Implementation

• The Pelican core is a standalone software project.
• Golang for core; Next.js for web UI.
• Shipped as a single statically-linked executable.
• Fairly significant reasonable test suite (~50% code coverage).

• For origins/caches, forks & manages an XRootD process.
• Dynamically generates XRootD configuration. One, YAML-based config file for

admins to manage.

• All components have a web (management) interface.
• Distributed via RPM and containers. Majority use is containers.

https://github.com/PelicanPlatform/pelican

Commit graph from the last 12 months

Pelican uses HTTP

• Pelican uses HTTP to move bytes.

• We hew to using standard HTTP
where possible. While we prefer
you use the Pelican client, any
HTTP client suffices.
• Downloading an object? => GET

• Uploading an object? => PUT

• Want to know if the object exists? =>
HEAD

Pelican “Manager” Components

The central manager contains two
components:

• The Registry maintains the
authoritative list of known caches,
origins, and namespaces.
• Also associates each entity with a list

of public keys.
• Authorization is done by signing an

appropriate token with the pubkey.

• The Director receives requests from
clients / caches and selects an
appropriate service.
• All communication done over HTTP!

Registry Director

Cache
Cache

Cache
Client

Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Director Response

• If you speak “plain HTTP”, you only understand the “blue” headers
and will successfully access the data.

• If you are the “Pelican client”, you can interpret the “red” headers:
• X-pelican-authorization: What token the client needs to successfully access

the data.

• X-pelican-namespace: What namespace the object is in. Informs client how
to reuse the director response; no need to return to director for each object.

• X-pelican-token-generation: If the client doesn’t have a usable token, how to
receive one.

• Link: An ordered list of potential endpoints (caches) that can serve the
requests. Actually, a standard RFC header (RFC 6249).

Pelican Origin

• Pelican daemon launches and
manages the xrootd daemon.
• However, HTTP data movement requests

go straight to the xrootd process.

• pelican’s HTTP interface is used for
monitoring, management, and token
issuer.

• XRootD can be configured for a variety
of backends.

Pelican Origin

pelican

xrootd

OA4MP
(issuer)

HTTP

HTTP

“Batteries Included” Origin

We aim to simplify the art of
running an origin:

• New web UI for viewing,
monitoring, and configuring the
origin.

• Origin runs built-in health checks

• Can use “connection reversing”
so incoming firewall port /
hostname / host certificate not
needed.

Site

New Backends

Beyond the traditional POSIX storage, we’ve added the
following backends:

• S3: Works with any S3-compatible endpoint

• Generic HTTP: Integrate existing HTTP endpoint into the
OSDF.

• Globus: Users must authorize sharing a collection to the
origin

• XRootD: Uses XRootD proxying module.

Note each of these backends can be used remotely – origin
does not need to be present at the local site.

Origin

Pelican Cache

• Similar setup to the origin: two
separate processes, two ports for
HTTP.
• Given the director and origin works

exclusively over HTTP, the XCache must
talk to them over HTTP as well.

Pelican Cache

pelican

xrootd
(Xcache)

HTTP

HTTP

Pelican
Director

Pelican
Origin

HTTP

A slide for the XRootD people out there…

Cache Container

Pelican process

XRootD process

H
T

TP

Cache

Storage

Client
Pelican
Plugin

Origin Container

Pelican process

XRootD process

H
T

TP

B
acken

d

O
SS

Object
Store

HTTP GET

Note: pelican plugin is
a modest wrapper
around libcurl.

Improved Dashboard
and Monitoring

Monitoring work is ongoing in two lines:

• Better communicating the data we have:
• Generating improved graphs of data moved, number of requests, breakdown

by project.
• Goal: Clearly show how your institution is impacting/enabling others, just like

the HTCondor-CE dashboard.

• Gathering more data:
• XRootD has deep coverage of successful transfers. Little aggregation of

filesystem errors; no monitoring of protocol-level (HTTP) events. Contributing
patches upstream to expose this data.

• What else do you want to see?

Work done by summer CHTC Fellow

Client - CLI

• While curl can be used, we have quite a bit of specialized knowledge:
• Immutable files means file download resumption is straightforward.
• Parse the extra director headers to understand where backup caches are.

Retry as necessary.
• From the director headers, we know what tokens are required and how to

generate them.

• The client can also do metadata operations (“stat”, “list”), recursive
upload/downloads of directories.

• (Coming soon!) Trigger the prestaging of objects to a cache.

• The client is all in the same static binary as the server – the entire
system is the one file.

Client - Python

• While we love CLIs, we want to tap into the Python community
(which is more interactive/visualization focused).

• Accordingly, we started a FSSpec for Pelican.
• Summer student was able to use the FSSpec to run PyTorch against the OSDF.

• Allows us to tap into more communities (particularly, a large
contingent of climate science).

https://github.com/PelicanPlatform/pelicanfs

Client - HTCondor

• The most commonly-used client is the HTCondor plugin!

• Allows you to specify “osdf://” or “pelican://” URLs for the input or output
sandbox.

• HTCondor and Pelican are the same team: While separate code bases, features
are developed jointly across the platforms.
• Example: Transfer ads. Pelican emits detailed transfer statistics for each transfer attempt

(successful or not) done at the EP.
• These transfer statistics are copied to the AP.
• condor_adstash can then aggregate the ads into an ElasticSearch database.

• Each month, we scan ElasticSearch to review hold messages generated by Pelican
and attempt to make them more “human readable”

• HTCSS can start up a Pelican “local cache” daemon, setting aside EP space to be
used for common input files.

+ =

Final Thoughts – Pelican & HTCondor

• In case it got lost in the details:
Pelican represents an investment into CHTC’s HTC vision.
• It is the “data component”, complimenting HTCSS.

• The project’s first year focused on re-engineering the OSDF.
• Implement new central components, Improve packaging, Increase

observability, Expand backends.

• What’s next? Tighter integration with HTCSS.

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

	Slide 1: Pelican Introduction
	Slide 2: Introducing the
	Slide 3: OSDF Integrates Independent Repositories into a common fabric
	Slide 4: OSDF Architecture - Vision
	Slide 5: A bit on the distribution layer…
	Slide 6: The : Connecting your repository
	Slide 7: OSDF & Pelican
	Slide 8: The Pelican Project
	Slide 9: by the numbers
	Slide 10: Example Daily Volume – June 2024
	Slide 11: How does the OSDF work?
	Slide 12: OSDF in Practice
	Slide 13: OSDF In Practice
	Slide 14: OSDF In Practice
	Slide 15: OSDF In Practice
	Slide 16: Architecture: Recap
	Slide 17: Zooming in – Technical Components
	Slide 18: Pelican Implementation
	Slide 19: Pelican uses HTTP
	Slide 20: Pelican “Manager” Components
	Slide 21: Example request from client to director
	Slide 22: Example director response
	Slide 23: Example director response
	Slide 24: Example director response
	Slide 25: Director Response
	Slide 26: Pelican Origin
	Slide 27: “Batteries Included” Origin
	Slide 28: New Backends
	Slide 29: Pelican Cache
	Slide 30: A slide for the XRootD people out there…
	Slide 31: Improved Dashboard and Monitoring
	Slide 32: Client - CLI
	Slide 33: Client - Python
	Slide 34: Client - HTCondor
	Slide 35: Final Thoughts – Pelican & HTCondor
	Slide 36: Questions?

