Pelican Introduction

N

v d -~

——
; Introducing the

-

v -

\/
The is a federated platform

delivering datasets from repositorie
compute in an effective, scalable ma

; OSDF Integrates Independent Repositories
into a common fabric

h NCAR y * About a dozen
* O repositories
integrated alread

more on the way.

Y AWS
Open Data

* Working to grow:
e clients,

* integrated
resources, and

* environments.

DeltaAl
| \ NCSA

3
*= existing integration

; OSDF Architecture - Vision

Long-term vision:
- - - - We want OSDF to be an “all-scienc
Requires:
* Connect many repositories to the
| | | distribution fabric. |

* Provide clients that enable as ma
cases.

And benefit from the network effe

A bit on the distribution layer...

* Anyone can run a cache!

 However, the OSDF
centrally runs regional
caches, mostly at netwo
locations.

* Builds on top of a
distributed Kubernetes
cluster run by the Natio
Research Platform (NRP

* Single, uniform interface
run services across the
country.

e “Typical” cache hardwar
is ~100GbE / 20TB NVM

I”

1pbox:

Regina

Winnipeg
Vancogyver
Ofal b = Quebec
<otk 13 Nova
5»5 9 :;, | 9 Ottawa Ma e
C 1 E v 9 Torgo 91 i
% X9
Q 2 as 8 low Chicago Detr : ' Iset
Pennsyly 9
U)
Ne - - =°\ linois = .
5 United Staté&s - Maryland
9 N Carolina
Los Al S Al | e x Atlanta
San Diego Miss A
Ciudad Juarez X 3 ”9 e oot
Austin s
Florida
i Q
Monterrey Miami Baliamas
' Mexico
Cuba
9 NRP Site
y Jamaica S OSDF-exclusive Site
Belize E=——
Guatemala © Mapbox © OpenStreetMap Improve this Mg’

The . Connecting your repository

The OSDF provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is
operated by

-

Using A) And integrates a wide
I ~ range of open science

Legend

@ Origin
X 9 Sites, 7 Institutions

Cache

V' 22 Sites, 15 Institutions

iiii
UNigerials 8 y

o

Cache and Origin
v ~ 5 Sites, 5 Institutions

As part of the OSG Consortium’s Fabric of Services

: OSDF & Pelican

* You may have seen prior
presentations about the
OSDF — it (or predecessor

have existed for ~10 years

* We split out the technolo
powering the OSDF and
christened it the “Pelican
Platform”.

 Same components as befo

just integrated into a
standalone platform.

=

OSDF
SOftware‘/ \

=

OSUF

Pelican @& Xxrootd

; The Pelican Project
The OSDF is operated byﬁusing hardware from N%J an

Who develops the software?

The Pelican project (OAC-2331480) is a newly-funded, S7M/4-
project with the following goals:

1. Strengthen and Advance the OSDF.

2. Expand the types of computing where OSDF is impactful.

3. Expand the science user communities.
e With a particular driver of the climate community.

by the numbers

Over the last 12 Data used by
months, the OSDF

transferred 15 ccience
230rs & collaborations &
~120 ospPool

125 req/s

users

Example Daily Volume — June 2024

2,000 TB

1,800 TB

1,600 TB —

1,400 TB —

1,200 TB

1,000 TB —

800 TB

600 TB —

400 TB

200 TB

0B

06-01 06-05 06-09 06-13 06-17 06-21 06-25 06-29

Note: individual experiments can still dominate a day’s activities.

J

How does the OSDF work?

A brief tour through the Pelican architecture as implemented by the -
11

‘_OS'-P'QGI

OSDF In Practice E"

e Currently, the most common
client for the OSDF is the
OSPool.

* The OSPool is a distributed H
Throughput Computing servi
part of the OSG Consortium
run by PATh.

* The OSPool is a distributed
HTCondor pool, run across ~6
sites, including 28 CC* award
(active + ‘alumni’).

Data Caching
Layer

Let’s run through a HTCondor Example

12

: OSDF In Practice

* If HTCondor needs an obje
say, a container — for a job
first step is to start the OSI
client.

e The OSDF client contacts t
manager, requesting to re
the object.

13

0SPool
EP

OSDF In Practice

* The manager determines a
nearby cache to serve the
object.

* Every location in the lower 4
states is within 500 miles fro
OSDF cache hosted by the N

* If the object is in cache, it is
served to the client
immediately.

* Otherwise...

14

OSPool
EP

OSDF In Practice

* The cache contacts the origi
hosting the object.

* The object prefix is used as a
routing key to determine the
correct origin.

Data Caching
Layer

* The origin will read the obje
from the underlying object
store.

e Typically, a filesystem — but
expanding to many dataset

repository types! Dataset

Repository

15

OSPool
EP

Architecture: Recap

* An origin service integrates the
object store into the OSDF in th
same way a CE integrates a batc
system into the OSPool. Interfac
to move data and map
authorizations.

* The cache service stores and
forwards objects, providing
scalability to the data access.

 The manager selects a source/si
of an object for clients and
maintains the namespace.

Data Caching
Layer

16

Pl

/ooming in —
Technical Components

Pelican Implementation

https://github.com/PelicanPlatform/pelican

* The Pelican core is a standalone software project.
* Golang for core; Next.js for web UI.
* Shipped as a single statically-linked executable.
 Fairly significant reasonable test suite (~50% code coverage).

* For origins/caches, forks & manages an XRootD process.

* Dynamically generates XRootD configuration. One, YAML-based config fil
admins to manage. |

e All components have a web (management) interface.
* Distributed via RPM and containers. Majority use is containers.

| -|||||I|||||..||I|I|||II||||||||I|.I||I.I.......__

09/17 10/08 10/29 1119 1210 12/31 01/21 02/11 03/03 03/24 04/14 05/05 05/26 06/16 07/07 07/28 08/18 09/08

Commit graph from the last 12 months

Pelican uses HTTP

* Pelican uses HTTP to move byt

* We hew to using standard HTTI

where possible. While we pref

you use the Pelican client, any

HTTP client suffices.
 Downloading an object? => GET
* Uploading an object? => PUT

* Want to know if the object exists
HEAD

N RCON) T3 pelican — -bash — 80x24

F4HP7QL65F:pelican bbockelm$ curl -L https://director-caches.osgdev.chtc.io/s3.a

mazonaws.com/us-west-1/hrrrzarr/sfc/20211016/20211016_00z_anl.zarr/2m_above_grou
nd/TMP/2m_above_ground/TMP/6.2 > /dev/null

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent

Left Speed
100 186 100 186 0 0 2534 0 ——t——tl-= ——l——i=— ——i——i1—— 2547
100 22083 100 22083 0 0 97k 0 ——t=——tm— ——l——l=— ——l——i-= 1960k
F4HP7QL65F:pelican bbockelm$ I

Pelican “Manager” Components

The central manager contains tw
components:

* The Registry maintains the
authoritative list of known cach
origins, and namespaces.

* Also associates each entity with
of public keys.

* Authorization is done by signing
appropriate token with the pubk

* The Director receives requests
clients / caches and selects an
appropriate service.

* All communication done over HT

Registry Director

Client

< . .
“ Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org

> User-Agent: curl/8.4.0

> Accept: */*

¢

Example director response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0Auth?2

< content-length: 109

Example director response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0Auth?2

< content-length: 109

Example director response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0Auth2

< content-length: 109

Director Response

* If you speak “plain HTTP”, you only understand the “blue” he
and will successfully access the data.

* If you are the “Pelican client”, you can interpret the “red” hea

* X-pelican-authorization: What token the client needs to successfully
the data.

* X-pelican-namespace: What namespace the object isin. Informs cli
to reuse the director response; no need to return to director for eacl

» X-pelican-token-generation: If the client doesn’t have a usable toke
receive one.

 Link: An ordered list of potential endpoints (caches) that can serve t
requests. Actually, a standard RFC header (RFC 6249).

Pelican Origin

* Pelican daemon launches and
manages the xrootd daemon.

* However, HTTP data movement
go straight to the xrootd process

Pelican Origin

* pelican’s HTTP interface is used f seliet OA4MP
monitoring, management, and t (issuer)
issuer.

* XRootD can be configured for a Xrootd

of backends.

“Batteries Included” Origin

O : We aim to simplify the art of

& C 25 ospool-ap2140.chte.wisc.edu:8444 view/origin/ * g 2 ® Finish update : . . .

L]
Pl Status Data Exports runnlng an Orlgln.
‘\ CMSD Federation Prefix PublicRead

/mnt/cephfs/fuse/ospool/ap40/data -sid
FallBackRead

e gt =+« New web Ul for viewing,
’ monitoring, and configuring t
- origin.

XRootD [] [] # Pelican Configuration X + v
Self-test monitoring cycle failed: Test file transfer failed ¢

L] L] L] L]
Contents of test file transfer body do not match upload: ¢ c °5 ospool-ap2140.chtc.wisc.edu:8... Yt la o} " Finish update : ® O rI I n r u n S b u I It - I n h e a |t h C h
lican/monitori test-2024-07-07707:42:45-05:0

/P
directory

Federation

; Server

Last Updated: Jul 7, 2024, 7:42 AM

Fransfor Rt o [m K * Can use “connection reversin

Server.ExternalWebUrl

:ZEEEEZS [Bytes Received (8ps) ovel https://ospool-ap2140.chtc.wisc.edu:8444 2 S O i n C O m i n g fi rewa | | p O rt /
@ a Server.Hostname
:ZEEEEEE ospool-ap2140.chtc.wisc.edu ? o e
® 10,000,000 h t / h t t f t
| ? ostname / host certificate n
Server.Issuerdwks ? n e e d e d .
[Server.lssuerPort

0 2
@ Save Changes
Server.lssucs

httns://osa-htc.ora/osnool 2

New Backends

Yond the traditional POSIX storage, we’ve added t
following backends:

* S$3: Works with any S3-compatible endpoint

e Generic HTTP: Integrate existing HTTP endpoint in
OSDF.

* Globus: Users must authorize sharing a collection
origin
* XRootD: Uses XRootD proxying module.

Note each of these backends can be used remotely
does not need to be present at the local site.

amazon
S3

|

Site Origin

&

Pelican Cache

e Similar setup to the origin: two

separate processes, two ports

HTTP.
* Given the director and origin wo

exclusively over HTTP, the XCach
talk to them over HTTP as well.

Pelican Cache

pelican

Pelican

Xrootd Director
(Xcache)

Pelican
Origin

A slide for the XRootD people out there...

Cache Container

Pelican process

Origin Container

Pelican process

XRootD process

XRootD process

Cache

Pelican
Plugin l

HTTP GET

Storage

Note: pelican plugin is

L e e e e e e e e e e e | a modest wrapper L e e e e e e e e e e |

around libcurl.

Work done by summer CHTC Fellow

Patrick Brophy

Mentor(s):
Haoming Meng

Improved Dashboard
and Monitoring

Monitoring work is ongoing in two lines:

e Better communicating the data we have:
* Generating improved graphs of data moved, number of requests, bre
by project. |

* Goal: Clearly show how your institution is impacting/enabling others,
the HTCondor-CE dashboard.

e Gathering more data:

* XRootD has deep coverage of successful transfers. Little aggregation
filesystem errors; no monitoring of protocol-level (HTTP) events. Con:
patches upstream to expose this data.

* What else do you want to see?

Client - CLI

* While curl can be used, we have quite a bit of specialized kno

* Immutable files means file download resumption is straightforward.

e Parse the extra director headers to understand where backup cache
Retry as necessary.

* From the director headers, we know what tokens are required and h
generate them.

* The client can also do metadata operations (“stat”, “list”), rec
upload/downloads of directories.

* (Coming soon!) Trigger the prestaging of objects to a cache.

* The client is all in the same static binary as the server — the e
system is the one file.

Client - Python

 While we love CLIs, we want to tap into the Python commu
(which is more interactive/visualization focused).

e Accordingly, we started a FSSpec for Pelican.
* Summer student was able to use the FSSpec to run PyTorch again

* Allows us to tap into more communities (particularly, a larg
contingent of climate science).

https://github.com/PelicanPlatform/pelicanfs

Client - HTCondor

* The most commonly-used client is the HTCondor plugin!

* Allows you to specify “osdf://” or “pelican://” URLs for the input or outp
sandbox.

 HTCondor and Pelican are the same team: While separate code bases, fe
are developed jointly across the platforms.

* Example: Transfer ads. Pelican emits detailed transfer statistics for each transfer a
(successful or not) done at the EP.

* These transfer statistics are copied to the AP.
e condor_adstash can then aggregate the ads into an ElasticSearch database.

* Each month, we scan ElasticSearch to review hold messages generated by
and attempt to make them more “human readable”

e HTCSS can start up a Pelican “local cache” daemon, setting aside EP spac
used for common input files.

Final Thoughts — Pelican & HTCondor

* In case it got lost in the details:
Pelican represents an investment into CHTC’s HTC vision.
* It is the “data component”, complimenting HTCSS.

* The project’s first year focused on re-engineering the OSDF.

* Implement new central components, Improve packaging, Increase
observability, Expand backends.

* What’s next? Tighter integration with HTCSS.

Questions?

This project is supported by the National Science Foundation und

Agreements OAC-2331480. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the auth
necessarily reflect the views of the National Science Foundation.

	Slide 1: Pelican Introduction
	Slide 2: Introducing the
	Slide 3: OSDF Integrates Independent Repositories into a common fabric
	Slide 4: OSDF Architecture - Vision
	Slide 5: A bit on the distribution layer…
	Slide 6: The : Connecting your repository
	Slide 7: OSDF & Pelican
	Slide 8: The Pelican Project
	Slide 9: by the numbers
	Slide 10: Example Daily Volume – June 2024
	Slide 11: How does the OSDF work?
	Slide 12: OSDF in Practice
	Slide 13: OSDF In Practice
	Slide 14: OSDF In Practice
	Slide 15: OSDF In Practice
	Slide 16: Architecture: Recap
	Slide 17: Zooming in – Technical Components
	Slide 18: Pelican Implementation
	Slide 19: Pelican uses HTTP
	Slide 20: Pelican “Manager” Components
	Slide 21: Example request from client to director
	Slide 22: Example director response
	Slide 23: Example director response
	Slide 24: Example director response
	Slide 25: Director Response
	Slide 26: Pelican Origin
	Slide 27: “Batteries Included” Origin
	Slide 28: New Backends
	Slide 29: Pelican Cache
	Slide 30: A slide for the XRootD people out there…
	Slide 31: Improved Dashboard and Monitoring
	Slide 32: Client - CLI
	Slide 33: Client - Python
	Slide 34: Client - HTCondor
	Slide 35: Final Thoughts – Pelican & HTCondor
	Slide 36: Questions?

