HTCondor System Architecture and Administration Introduction

European HTCondor Workshop 2024

Todd Tannenbaum Center for High Throughput Computing University of Wisconsin-Madison

HTCSS = <u>HTC</u>ondor <u>Software Suite</u>

AP = Access Point EP = Execution Point CM = Central Manager CE = Compute Entrypoint HTCondor Pool = CM + EP(s)<u>HTCondor System</u> = CM + AP(s) + EP(s)

Job Matching and Class Ad Attributes

Class Ads

- HTCondor stores a list of information about each job and each computer.
- This information is stored as a "Class Ad"

• Class Ads have the format: AttributeName = value
can be a boolean, number, string, or expression

ClassAd Values

- Literals
 - Strings ("RedHat6"), integers, floats, boolean (true/false), ...
- Expressions
 - Similar look to C/C++ or Java : operators, references, functions
 - References: to other attributes in the same ad, or attributes in an ad that is a candidate for a match
 - Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all work as expected
 - Built-in Functions: if/then/else, string manipulation, regular expression pattern matching, list operations, dates, randomization, math (ceil, floor, quantize,...), time functions, eval, ...

5

ClassAd Examples

AP Job Ad

```
Type = "Job"
Requirements =
   HasMatlabLicense
    == True &&
   Memory >= 1024
Rank = kflops + 1000000 *
Memory
Cmd= "/bin/sleep"
Args = "3600"
Owner = "gthain"
NumJobStarts = 8
KindOfJob = "simulation"
Department = "Math"
```

EP Machine Slot Ad

```
Type = "Machine"
Cpus = 40
Memory = 2048
Requirements =
 (Owner == "gthain") ||
 (KindOfJob == "simulation")
Rank = Department == "Math"
HasMatlabLicense = true
MaxTries = 4
kflops = 41403
```

Job Matching

 On a regular basis, the central manager reviews Job resource requests from APs and matches them to EP Slot ads.

Job Execution

• (Then the AP and EP points communicate directly.)

Architecture & Job Startup

AP Core Process View

EP Core Process View

Central Manager Process View

Claiming Protocol

Claim Activation

Repeat until Claim released

Repeat until Claim released

Now the Manual will make more sense!

REFERENCE MANUALS

Users' Manual

Administrators' Manual

Introduction

Starting Up, Shutting Down and Reconfiguring the System

Introduction to Configuration

□ Configuration Macros

HTCondor-wide Configuration File Entries

Daemon Logging Configuration File Entries

DaemonCore Configuration File Entries

Network-Related Configuration File Entries

Shared File System Configuration File Macros

condor_master Configuration File Macros

condor_startd Configuration File Macros

condor_schedd Configuration File Entries

condor_shadow Configuration File Entries

condor_starter Configuration File Entries

condor_submit Configuration File Entries

v: latest 🗸

Read the Docs

HIGH THROUGHPUT

CENTER FOR

COMPUTING

condor_schedd Configuration File Entries

These macros control the condor_schedd.

SHADOW

This macro determines the full path of the *condor_shadow* binary that the *condor_schedd* spawns. It is normally defined in terms of **\$(SBIN)**.

START_LOCAL_UNIVERSE

A boolean value that defaults to TotalLocalJobsRunning < 200. The condor_schedd uses this macro to determine whether to start a local universe job. At intervals determined by SCHEDD_INTERVAL, the condor_schedd daemon evaluates this macro for each idle local universe job that it has. For each job, if the START_LOCAL_UNIVERSE macro is True, then the job's Requirements expression is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10 **local** universe jobs to execute concurrently. The attribute TotalLocalJobsRunning is supplied by *condor_schedd* 's ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10</pre>

STARTER_LOCAL

The complete path and executable name of the *condor_starter* to run for **local** universe jobs. This variable's value is defined in the initial configuration provided with HTCondor as

STARTER_LOCAL = \$(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be upgraded from one running a version of HTCondor that existed before the **local** universe to one that includes the **local** universe, but without utilizing the newer, provided configuration files.

LOCAL_UNIV_EXECUTE

A string value specifying the execute location for local universe jobs. Each running local universe job will receive a uniquely named subdirectory within this directory. If not specified, it defaults to \$(SPOOL)/local_univ_execute.

And so will admin tools

\$ condor_status						
Name	OpSys	Arch	State	Activity	LoadAv	Mem
<pre>slot1@chevre.cs.wi</pre>	LINUX	X86_64	Unclaimed	Idle	0.190	20480
<pre>slot2@chevre.cs.wi</pre>	LINUX	X86_64	Claimed	Busy	0.992	20480
slot3@chevre.cs.wi	LINUX	X86_64	Claimed	Busy	1.000	20480
<pre>slot4@chevre.cs.wi</pre>	LINUX	X86_64	Unclaimed	Idle	0.000	20480

Condor Installation Basics

http://htcondor.org/htcondor/download

20

COMPUTING

Version Number Scheme

> Major.minor.release

• Represents Year (we hope)

> Major.minor.release

- If minor is zero (a.b.c): Stable series
 - Very stable, mostly bug fixes
 - Current: 23.0.12
 - Examples: 23.0.1,
 - 24.0.1 coming soon to a repo near you
- If minor is non-zero (a.b.c): Developer series
 - New features, may have some bugs
 - Current: 23.10.1

The Guarantee

> All minor releases in a stable series interoperate

- E.g. can have pool with 23.0.1, 23.0.9, etc.
- But not WITHIN A MACHINE:
 - Only across machines
- > The Reality
 - We work really hard to do better
 - 23.9 with 24.0, etc.
 - Part of HTC ideal: can never upgrade in lock-step
 - We document when we break this.

Let's Install "minicondor"

- > Either with tarball (usually for non-root installs)
- > Or native packages (for Linux as root)

curl -fsSL https://get.htcondor.org |
sudo GET_HTCONDOR_PASSWORD="myPassword" /bin/bash
-s -- --no-dry-run --minicondor cm.toddt.org

Or for Docker people:

CENTER FOR

omputing

ROUGHPUT

docker run -it htcondor/mini bash

3 Separate machines

- > Central Manager
- > Execute Machine

> Submit Machine

Central Manager

curl -fsSL https://get.htcondor.org |
sudo GET_HTCONDOR_PASSWORD="myPassword"
/bin/bash -s -- --no-dry-run -central-manager
cm.toddt.org

Access Point

curl -fsSL https://get.htcondor.org |
sudo GET_HTCONDOR_PASSWORD="myPassword"
/bin/bash -s -- --no-dry-run --submit
cm.toddt.org

Execution Point

curl -fsSL https://get.htcondor.org |
sudo GET_HTCONDOR_PASSWORD="yourPassword"
/bin/bash -s -- --no-dry-run --**execute**cm.toddt.org

Voila! Pool Running

> But how is it configured by default? Config files go into /etc/condor/config.d

condor_config_val –dump (show all config knobs!)

condor_config_val --summary (show only customized knobs)

- > Q: Who can submit jobs? A: Anyone who can login to AP
- > Q: Who can use administrative commands? A: root
- > Q: Scheduling policy? A: Fair-share across users
- > Q: What UID is used to run the jobs?

CENTER FOR

OMPUTING

ROUGHPUT

What UID should jobs run as?

> Three Options (all require root):

- Nobody UID
 - Safest from the machine's perspective
- The submitting User
 - Most useful from the user's perspective
 - May be required if shared filesystem exists
- A "Slot User"

CENTER FOR

omputing

• Bespoke UID per slot

.OUGHPUT

Good combination of isolation and utility

UID_DOMAIN SETTINGS

UID_DOMAIN = same_string_on_submit
TRUST_UID_DOMAIN = true
SOFT UID DOMAIN = true

If UID_DOMAINs match, jobs run as user, otherwise "nobody"

Slot User

$SLOT1_USER = slot1$ $SLOT2_USER = slot2$

STARTER_ALOW_RUNAS_OWNER = false
EXECUTE_LOGIN_IS_DEDICATED=true

Job will run as slotX Unix user

...

FILESYSTEM_DOMAIN

> HTCondor can work with NFS

- But how does it know what nodes have it?
- > WhenSubmitter & Execute nodes share
 - FILESYSTEM DOMAIN values

CENTER FOR

- e.g FILESYSTEM_DOMAIN = domain.name

- > Or, submit file can always transfer with
 - should_transfer_files = yes
- > If jobs always idle, first thing to check

I want my custom the scheduling policy

- > First write your policy "in English"
- > Then use the power of ClassAds to express it!
 - ClassAd expressions at AP control which jobs are allowed, what attributes must be specified, ...
 - ClassAd expressions at the EP control when/who can use the EP, when to evict jobs, when to run the job inside a container, ...
 - ClassAd expressions at the Central Manager control which ads are accepted into the pool, best-fit/first-fit policy, ...
- > Need help? You can ask on htcondor-users email list

Thank you!

Questions? Join us on the htcondor-users email list! https://htcondor.org/mail-lists/#user

This work is supported by <u>NSF</u> under Cooperative Agreement <u>OAC-2030508</u> as part of the <u>PATh</u> <u>Project</u>. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF

