
Adapting Frequency-Hough Analysis
workflow to run on IGWN resources

by S. Dal Pra, L. Silvestri,
on behalf of the

VIRGO Rome group.

HTCondor WS, 25/09/2024

Good laws already exist; it only remains to apply them.

Blaise Pascal

Every model should be as general as possible, but not more general.

Anonymous

The Frequency�Hough analysis

All-sky search for Continuous GW signals, developed by the Virgo Rome Group.

The search is on data collected during an Observing Run (8+ months) from both
Livingston and Hanford detectors, for signals in the range 20Hz6F 6 2048Hz.

Input in Band Sampled Data (BSD) format (�t=1 Month, �F=10Hz,�0.4GB)

All-sky: ¡90�6 �6 90�, 0�6�6 360�

Computing performed by FH_analysis Matlab executable. Very CPU intensive,
several days per job, hardly predictable runtime (a few jobs take much longer than
others) increasing with F

Arguments: 8 parameters

¡ Frequency interval (F ;�F) with �F =1Hz, F 2 [20; 2048]Hz

¡ sdmin; sdmax� [10¡8; 2 � 10¡9]Hz/s , we split this into 4 sub�intervals

¡ �min; �max can be chosen at convenience

¡ �min; �max can be chosen at convenience (recently)

O3 campaign

Performed at CNAF, strictly tied with local infrastructure assets.

In view of O4, effort started to run on IGWN (OSG + WLCG) Grid sites.

Problems to consider

CNAF IGWN
Job submission HTC-CE / local dedicated SN AP
BSD access local shared fs (GPFS) CVMFS+scitoken
Matlab RTL local shared fs Singularity
Max. Runtime 3 / 12 days U [1h; 72h]
Output upload Grid/local w access HTC tf data / Grid copy
Uniform APM gems_ap.py cnaf.json gems_ap.py igwn.json

Job Submission

¡ An IGWN Submit Node (Jul 2023, HTC 10.9) was set up to join the IGWN
HTC pool

¡ A python job wrapper was written to prepare the environment for the matlab
executable and generalize CNAF vs IGWN

BSD access from CVMFS

¡ BSD files need to be copied locally before launching the executable (it crashes
on direct access from cvmfs)

¡ copy can fail initially, the wrapper retries a few times before give up.

¡ Sites can have systematic cvmfs failure; these are blacklisted in the submit file.

Requirements = !StringListMember(TARGET.GLIDEIN_Site,"Site1,Site2, . . . ")

¡ other sites have occasional cvmfs failure! �Site BlackHole syndrome�. When
this happens number of running jobs dramatically drops.

~]$ condor_history -lim 1000 -cons 'exitcode==2' -af \
MATCH_Glidein_Site | sort | uniq -c

13 GATech
922 IN2P3
2 SURFsara
4 PSU-LIGO
5 USdC
52 Vanderbilt

Note: exitcode == 2 means �cvmfs error�

¡

eday site okjob kojob ok_h ko_h ok_skp ko_skp
2024-09-18 IN2P3 536 16 2642.59 2.15 737065 22467
2024-09-18 IN2P3 288 0 1501.74 0.00 423810 0
2024-09-18 IN2P3 159 7 729.97 10.99 217598 4846
2024-09-18 IN2P3 655 606 2566.31 342.26 926548 874420
2024-09-18 IN2P3 1291 736 4654.77 565.55 1754785 1096374
2024-09-18 IN2P3 335 103 1378.67 29.51 487799 142104

Matlab Runtime Library

¡ Matlab Executable needs to see it as a �local� folder. CNAF provides it from a
shared fs, at a non standard path. Every IGWN site might or might not have
its own.

¡ It must match the exact matlab version of the executable.

¡ For IGWN, that is provided via singularity (latest available: R2023a)

+SingularityImage = "/cvmfs/singular . . . /osgvo-matlab-runtime:R2022b"

Note: assuming a specific igwn image is created, that will not be providing
also the MRTL. This would would need a �merge� of the two.

Output Upload

FH_analysis produces a Candidates datafile: Cand_mat, O(1MB) and a
few summary files.

¡ datafiles are transferred at CNAF storage via gfal-copy + X509 proxy

¡ Scitoken or IAM token could be used BUT: have no fresh token (yet) at upload
time.

¡ condor_transfer_data also available, but less uniform (i.e. different AP,
different transfer_dir)

Output filename has the format: <JobID>_Cand_<LL|LH>_<Args>_<adler32>.mat The job
with the matching Args attribute has actually done.

Job wrapper A python script takes care of preparing everything needed by the
executable to run:

¡ detects Checkpoint file (more on that later)

¡ retrieves datafiles from the specified repository

¡ logs information of interest (e.g. timings)

¡ set custom exit code on errors, offers troubleshooting aid

¡ upload datafile to specified destination, clean the workspace on exit 0

It reads configuration from a json file.

With this machinery in place, jobs can be submitted to IGWN or CNAF using the
same basic setup, and run successfully BUT.. .

The eviction problem

Initially, a vast majority, O(90%) of IGWN jobs were failing with (to me) unclear
reason

¡ job logfile only, with a laconic �your job was evicted� msg

¡ no stdout nor stderr (no idea on how it was doing on at eviction time)

¡ no EvictionReason Classad Attribute.

Most reasonable reason�guess to date:

¡ our singlecore job is a payload started into a GlideIn pilot, which looks just like
a regular 8-core job at the site where it runs.

¡ The GlideIn pilot usually has a maximum lifetime < 3 days (default on HTC-
CEs)

¡ Our payload might be started into an �old� pilot having a few hours lifetime

¡ our pilot was tuned to last less than 3 days

¡ our pilot required NumJobStarts == 0, thus is not rescheduled after eviction

This led us to rethink out model for IGWN

Addressing Jobs Runtime limits

Jobs parameters were tuned initially to have an average runtime of 2 days. The
estimation was too poor, due to beta only splitting, so we also added lambda
splitting.

Figure 1. Skypoints for a given frequency band F ;�F = 1Hz. Points are evenly
distributed in � (longitude) but not in � (latitude)

A simple skypoints estimator was written. This allowed us to define job Args
having �2000 skypoints, which takes �40h on the slowest machines. This is good
BUT. . .

Dealing with job eviction

¡ A HTCondor user can specify requirements for a number of cores, an amount
of memory, of disk, . . . , Cannot require an amount of runtime.

¡ Well, not really:
Requirements = (time() < (GLIDEIN_ToDie - 3600 * 48)

(BTW: what is better, time() or ServerTime)?

¡ It is preferrable to have a long running job to eventually finish somehow, so
we try to implement . . .

Checkpointing for the executable

¡ FH_analysis computes a matlab array whose length is the number of sky-
points

¡ Array elements are computed one by one in a for loop

¡ We modify FH_analysis to dump the partial array every 50 computed sky-
points to a CKP_<args>.mat (that's � 1 dump per hour).

¡ at start, FH_analysis detects existence of a CKP_<args>.mat file. If present,
that is loaded and computation goes on from there

Checkpointing

We modify the wrapper gems_ap.py to be checkpointing aware:

¡ If a checkpoint file exists AND time()-GLIDEIN_ToDie < 300 it exits with
checkpoint_exit_status (85).

¡ Whenever possible, HTCondor restarts the very same sandbox of the job in
the same machine

That works BUT.. .

¡ Quite often the payload is restarted in the very same GlideIn pilot it just left
(apparently, STARTD expression is not re�evaluated in this case)

¡ The wrapper notices that time()-GLIDEIN_ToDie < 300 is True and exit(85)
again

¡ a �ping pong match� (a.k.a. race condition) begins. Three possible outcomes:

a) The GlideIn pilot is terminated while the payload is running in it and before
it can exit(85) ! the work done by the job is lost

b) The payload is restarted in a different slot in the same machine! checkpoint
is succesfull, the job continues regularly

c) The payload is restarted in another machine ! checkpoint partially succes-
full, the job could continue regularly BUT. . .

¡ In case of c) the BSD files must be copied again from cvmfs, access is pro-
tected by scitoken BUT.. . The scitoken initially used has expired

¡ Note: the job also has a valid X509 proxy which used to work to access cvmfs
BUT.. . X509 proxy access was disabled months ago

¡ The successfull case b) is pretty frequent anyway.

¡ This, together with reasonably short job runtime enhances success probability

After reducing average runtime and adding checkpointing, the success rate of
IGWN jobs boosted.

Running a campaign

We can now organize execution of FH_analysis over O4a data. We have:

¡ gems_ap.py + conf_[CNAF|IGWN|other].json can drive execution of one
job at a given pool

¡ queue bulkarg from $(MY_BULKFILE) in the submit file to specify several
jobs

define the complete job list

We need to define the exact list of all the jobs to be executed. With the constraint
that a job should not work on more than 2000 skypoints, it makes 3.2 � 106 jobs
per detector. We put that list in a PostgreSQL database table

acct=> select id,args,statusL,statusH from o4ajobs where split_part(args,' ',1)::int = 437 limit 3;
id args statusL statusH

25226 437 1 -4e-09 -1e-09 -70 -50 90 180 0 100
22686 437 1 -1e-08 -7e-09 -50 -30 180 270 100 10
22711 437 1 -7e-09 -4e-09 30 50 0 90 100 100

Select jobs to submit We select rows where statusL is 0 and change to 10:

UPDATE o4ajobs SET numtry = numtry + 1, statusL = 10
WHERE

id IN (SELECT id FROM o4ajobs WHERE statusl = 0
ORDER BY split_part(args,' ',1)::int limit 100) RETURNING args;

The args returned by the above query are written into $(MY_BULKFILE). Con-
current agents can fetch rows without interferring to each other.

Check and submit

A cron script checks the pool with condor_q -totals. If less than X jobs are
pending, a new bulkfile is created and queued with condor_submit.

Check for completed jobs

When a job output file is found at the CNAF storage, the corresponding entry is
updated with statusX=100, and that job is completed. We scan regularly:

~]$./update_donejobs3.py
updates CNAF: {'LH': 10332, 'LL': 10398} totfiles: 295873
updates IGWN: {'LH': 23482, 'LL': 24190} totfiles: 381428

Resubmitting jobs After some reasonable time, jobs with statusX=10 in the
database can be set again to 0 and these will be automatically resubmitted.

Next steps

Jobs completed for both detectors are easily found from the database:
SELECT args FROM o4ajobs WHERE statusL=100 AND statusH=100;

Their ouput (two Candidate files) is compared to create one Coincidence file, for
subsequent analysis.

Accounting

In the AP (igwn-sn.cr.cnaf.infn.it) PER_JOB_HISTORY_DIR has been
defined to collect history.<ClusterId>.<ProcId> files. These are parsed to
extract accounting data, which are stored in a job table:

month n fail skp skp_ok wctok_h perc_wct_fail cnaf_wctok
2024-07 125 78 583171 228259 702.11 59.82 1193944.93
2024-08 237162 22310 282491962 249181368 575194.69 7.00 1601992.67
2024-09 419997 79594 589532449 473254601 995513.90 7.20 1785209.74

¡ last column is taken from CNAF accounting database

¡ wct_cnaf > wct_igwn however skp_day_cnaf < skp_day_igwn. This is due
to a better average computing power at IGWN side.

¡ IGWN sites are providing more work than local submission @CNAF alone.

Conclusions

¡ A slightly general setup to run a computing campaign for CGW search has
been implemented

¡ The FH_analysis campaign on O4a data is in progress, unattended, just
check for problems.

¡ Failures with data access can occur but are not much harmful, since these
happen initially, thus wasting a negligible runtime amount. Need to blacklist
systematic failures.

¡ Failures at checkpointing are a more important loss, but still quite limited. One
case can be addressed at user side.

¡ load distributed to different sites / Grids, more can be added at convenience.

¡ Still on HTC 10.9 for the AP. Moving to HTC23 would enable better solutions

¡ Have had very valuable help and support from the IGWN community and HTC
experts, ¡! THANKS!

	The Frequency–Hough analysis
	Arguments:
	O3 campaign
	Problems to consider
	Job Submission
	BSD access from CVMFS
	Matlab Runtime Library
	Output Upload
	Job wrapper
	The eviction problem
	Addressing Jobs Runtime limits
	Dealing with job eviction
	Checkpointing for the executable
	Checkpointing
	Running a campaign
	define the complete job list
	Select jobs to submit
	Check and submit
	Check for completed jobs
	Resubmitting jobs
	Next steps
	Accounting
	Conclusions

