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The Frequency�Hough analysis

All-sky search for Continuous GW signals, developed by the Virgo Rome Group.

The search is on data collected during an Observing Run (8+ months) from both
Livingston and Hanford detectors, for signals in the range 20Hz6F 6 2048Hz.

Input in Band Sampled Data (BSD) format (�t=1 Month, �F=10Hz,�0.4GB)

All-sky: ¡90�6 �6 90�, 0�6�6 360�

Computing performed by FH_analysis Matlab executable. Very CPU intensive,
several days per job, hardly predictable runtime (a few jobs take much longer than
others) increasing with F

Arguments: 8 parameters

¡ Frequency interval (F ;�F ) with �F =1Hz, F 2 [20; 2048]Hz

¡ sdmin; sdmax� [10¡8; 2 � 10¡9]Hz/s , we split this into 4 sub�intervals



¡ �min; �max can be chosen at convenience

¡ �min; �max can be chosen at convenience (recently)

O3 campaign

Performed at CNAF, strictly tied with local infrastructure assets.

In view of O4, effort started to run on IGWN (OSG + WLCG) Grid sites.

Problems to consider

CNAF IGWN
Job submission HTC-CE / local dedicated SN AP
BSD access local shared fs (GPFS) CVMFS+scitoken
Matlab RTL local shared fs Singularity
Max. Runtime 3 / 12 days U [1h; 72h]
Output upload Grid/local w access HTC tf data / Grid copy
Uniform APM gems_ap.py cnaf.json gems_ap.py igwn.json



Job Submission

¡ An IGWN Submit Node (Jul 2023, HTC 10.9) was set up to join the IGWN
HTC pool

¡ A python job wrapper was written to prepare the environment for the matlab
executable and generalize CNAF vs IGWN

BSD access from CVMFS

¡ BSD files need to be copied locally before launching the executable (it crashes
on direct access from cvmfs)

¡ copy can fail initially, the wrapper retries a few times before give up.

¡ Sites can have systematic cvmfs failure; these are blacklisted in the submit file.

Requirements = !StringListMember(TARGET.GLIDEIN_Site,"Site1,Site2, . . . ")

¡ other sites have occasional cvmfs failure! �Site BlackHole syndrome�. When
this happens number of running jobs dramatically drops.



~]$ condor_history -lim 1000 -cons 'exitcode==2' -af \
MATCH_Glidein_Site | sort | uniq -c

13 GATech
922 IN2P3
2 SURFsara
4 PSU-LIGO
5 USdC
52 Vanderbilt

# Note: exitcode == 2 means �cvmfs error�

¡

eday site okjob kojob ok_h ko_h ok_skp ko_skp
2024-09-18 IN2P3 536 16 2642.59 2.15 737065 22467
2024-09-18 IN2P3 288 0 1501.74 0.00 423810 0
2024-09-18 IN2P3 159 7 729.97 10.99 217598 4846
2024-09-18 IN2P3 655 606 2566.31 342.26 926548 874420
2024-09-18 IN2P3 1291 736 4654.77 565.55 1754785 1096374
2024-09-18 IN2P3 335 103 1378.67 29.51 487799 142104

Matlab Runtime Library

¡ Matlab Executable needs to see it as a �local� folder. CNAF provides it from a
shared fs, at a non standard path. Every IGWN site might or might not have
its own.

¡ It must match the exact matlab version of the executable.

¡ For IGWN, that is provided via singularity (latest available: R2023a)



+SingularityImage = "/cvmfs/singular . . . /osgvo-matlab-runtime:R2022b"

Note: assuming a specific igwn image is created, that will not be providing
also the MRTL. This would would need a �merge� of the two.

Output Upload

FH_analysis produces a Candidates datafile: Cand_ . . . .mat, O(1MB) and a
few summary files.

¡ datafiles are transferred at CNAF storage via gfal-copy + X509 proxy

¡ Scitoken or IAM token could be used BUT: have no fresh token (yet) at upload
time.

¡ condor_transfer_data also available, but less uniform (i.e. different AP,
different transfer_dir)

Output filename has the format: <JobID>_Cand_<LL|LH>_<Args>_<adler32>.mat The job
with the matching Args attribute has actually done.

Job wrapper A python script takes care of preparing everything needed by the
executable to run:



¡ detects Checkpoint file (more on that later)

¡ retrieves datafiles from the specified repository

¡ logs information of interest (e.g. timings)

¡ set custom exit code on errors, offers troubleshooting aid

¡ upload datafile to specified destination, clean the workspace on exit 0

It reads configuration from a json file.

With this machinery in place, jobs can be submitted to IGWN or CNAF using the
same basic setup, and run successfully BUT.. .

The eviction problem

Initially, a vast majority, O(90%) of IGWN jobs were failing with (to me) unclear
reason

¡ job logfile only, with a laconic �your job was evicted� msg

¡ no stdout nor stderr (no idea on how it was doing on at eviction time)



¡ no EvictionReason Classad Attribute.

Most reasonable reason�guess to date:

¡ our singlecore job is a payload started into a GlideIn pilot, which looks just like
a regular 8-core job at the site where it runs.

¡ The GlideIn pilot usually has a maximum lifetime < 3 days (default on HTC-
CEs)

¡ Our payload might be started into an �old� pilot having a few hours lifetime

¡ our pilot was tuned to last less than 3 days

¡ our pilot required NumJobStarts == 0, thus is not rescheduled after eviction

This led us to rethink out model for IGWN

Addressing Jobs Runtime limits

Jobs parameters were tuned initially to have an average runtime of 2 days. The
estimation was too poor, due to beta only splitting, so we also added lambda
splitting.



Figure 1. Skypoints for a given frequency band F ;�F = 1Hz. Points are evenly
distributed in � (longitude) but not in � (latitude)



A simple skypoints estimator was written. This allowed us to define job Args
having �2000 skypoints, which takes �40h on the slowest machines. This is good
BUT. . .

Dealing with job eviction

¡ A HTCondor user can specify requirements for a number of cores, an amount
of memory, of disk, . . . , Cannot require an amount of runtime.

¡ Well, not really:
Requirements = (time() < (GLIDEIN_ToDie - 3600 * 48)

(BTW: what is better, time() or ServerTime)?

¡ It is preferrable to have a long running job to eventually finish somehow, so
we try to implement . . .

Checkpointing for the executable

¡ FH_analysis computes a matlab array whose length is the number of sky-
points

¡ Array elements are computed one by one in a for loop



¡ We modify FH_analysis to dump the partial array every 50 computed sky-
points to a CKP_<args>.mat (that's � 1 dump per hour).

¡ at start, FH_analysis detects existence of a CKP_<args>.mat file. If present,
that is loaded and computation goes on from there

Checkpointing

We modify the wrapper gems_ap.py to be checkpointing aware:

¡ If a checkpoint file exists AND time()-GLIDEIN_ToDie < 300 it exits with
checkpoint_exit_status (85).

¡ Whenever possible, HTCondor restarts the very same sandbox of the job in
the same machine

That works BUT.. .

¡ Quite often the payload is restarted in the very same GlideIn pilot it just left
(apparently, STARTD expression is not re�evaluated in this case)

¡ The wrapper notices that time()-GLIDEIN_ToDie < 300 is True and exit(85)
again



¡ a �ping pong match� (a.k.a. race condition) begins. Three possible outcomes:

a) The GlideIn pilot is terminated while the payload is running in it and before
it can exit(85) ! the work done by the job is lost

b) The payload is restarted in a different slot in the same machine! checkpoint
is succesfull, the job continues regularly

c) The payload is restarted in another machine ! checkpoint partially succes-
full, the job could continue regularly BUT. . .

¡ In case of c) the BSD files must be copied again from cvmfs, access is pro-
tected by scitoken BUT.. . The scitoken initially used has expired

¡ Note: the job also has a valid X509 proxy which used to work to access cvmfs
BUT.. . X509 proxy access was disabled months ago

¡ The successfull case b) is pretty frequent anyway.

¡ This, together with reasonably short job runtime enhances success probability

After reducing average runtime and adding checkpointing, the success rate of
IGWN jobs boosted.



Running a campaign

We can now organize execution of FH_analysis over O4a data. We have:

¡ gems_ap.py + conf_[CNAF|IGWN|other].json can drive execution of one
job at a given pool

¡ queue bulkarg from $(MY_BULKFILE) in the submit file to specify several
jobs

define the complete job list

We need to define the exact list of all the jobs to be executed. With the constraint
that a job should not work on more than 2000 skypoints, it makes 3.2 � 106 jobs
per detector. We put that list in a PostgreSQL database table

acct=> select id,args,statusL,statusH from o4ajobs where split_part(args,' ',1)::int = 437 limit 3;
id args statusL statusH

25226 437 1 -4e-09 -1e-09 -70 -50 90 180 0 100
22686 437 1 -1e-08 -7e-09 -50 -30 180 270 100 10
22711 437 1 -7e-09 -4e-09 30 50 0 90 100 100

Select jobs to submit We select rows where statusL is 0 and change to 10:



UPDATE o4ajobs SET numtry = numtry + 1, statusL = 10
WHERE

id IN (SELECT id FROM o4ajobs WHERE statusl = 0
ORDER BY split_part(args,' ',1)::int limit 100) RETURNING args;

The args returned by the above query are written into $(MY_BULKFILE). Con-
current agents can fetch rows without interferring to each other.

Check and submit

A cron script checks the pool with condor_q -totals. If less than X jobs are
pending, a new bulkfile is created and queued with condor_submit.

Check for completed jobs

When a job output file is found at the CNAF storage, the corresponding entry is
updated with statusX=100, and that job is completed. We scan regularly:

~]$ ./update_donejobs3.py
updates CNAF: {'LH': 10332, 'LL': 10398} totfiles: 295873
updates IGWN: {'LH': 23482, 'LL': 24190} totfiles: 381428

Resubmitting jobs After some reasonable time, jobs with statusX=10 in the
database can be set again to 0 and these will be automatically resubmitted.



Next steps

Jobs completed for both detectors are easily found from the database:
SELECT args FROM o4ajobs WHERE statusL=100 AND statusH=100;

Their ouput (two Candidate files) is compared to create one Coincidence file, for
subsequent analysis.

Accounting

In the AP (igwn-sn.cr.cnaf.infn.it) PER_JOB_HISTORY_DIR has been
defined to collect history.<ClusterId>.<ProcId> files. These are parsed to
extract accounting data, which are stored in a job table:

month n fail skp skp_ok wctok_h perc_wct_fail cnaf_wctok
2024-07 125 78 583171 228259 702.11 59.82 1193944.93
2024-08 237162 22310 282491962 249181368 575194.69 7.00 1601992.67
2024-09 419997 79594 589532449 473254601 995513.90 7.20 1785209.74

¡ last column is taken from CNAF accounting database

¡ wct_cnaf > wct_igwn however skp_day_cnaf < skp_day_igwn. This is due
to a better average computing power at IGWN side.

¡ IGWN sites are providing more work than local submission @CNAF alone.



Conclusions

¡ A slightly general setup to run a computing campaign for CGW search has
been implemented

¡ The FH_analysis campaign on O4a data is in progress, unattended, just
check for problems.

¡ Failures with data access can occur but are not much harmful, since these
happen initially, thus wasting a negligible runtime amount. Need to blacklist
systematic failures.

¡ Failures at checkpointing are a more important loss, but still quite limited. One
case can be addressed at user side.

¡ load distributed to different sites / Grids, more can be added at convenience.

¡ Still on HTC 10.9 for the AP. Moving to HTC23 would enable better solutions

¡ Have had very valuable help and support from the IGWN community and HTC
experts, ¡! THANKS!
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