
New horizons for
Stoomboot: from

Torque to HTCondor
Dennis van Dok

2024 European HTCondor Workshop, Nikhef,
Amsterdam, Thu 2024-09-26

1

A Long-expected Party
How do you move away from a system you’ve been

operating for over twenty years? How do you transfer
two decades worth of technical proficiency to an

entirely new system, while keeping the lights on? How
do you get your users to make the transition with you,

who are set in their ways and stand to gain little?

3

The Elder Days
The Physics Data Processing group (PDP) at Nikhef

operates two computational facilities at some scale.
Since the early 2000s we participate in the world-wide

Grid, where we are committed to run the NL-T1
together with our partners at SURF.

4

The Stoomboot facility is a local cluster for our own
researchers in physics. While smaller in scale, it can be
more complicated because of a diversity of users and

their workloads.

5

In the coming pages we will learn something about the
design of the original system and how this has recently

been re-implemented with HTCondor.

6

The Fellowship
The work described here was done by my esteemed

colleagues: Mary Hester, Jeff Templon, Emily Kooistra,
and Andrew Pickford. I am grateful for their hard work,

the spirited discussions we had and their insightful
contributions.

Many thanks alsa to the team of Miron Livny for their
steadfast commitment and support.

7

Contents
A Long-expected Party
The Shadow of the Past
Many Partings
The Plan
Re-imagining the queues
Everything in a Container
Accounting Groups
The Express Negotiator
Layout of nodes
The Road Goes Ever On

8

The Shadow of the Past
At the time there weren’t many options for running

batch systems and we opted for Torque, an open
source PBS derivative.

Both Stoomboot and Grid were (eventually) aligned on
the same version.

10

The Scheduler
Stoomboot and Grid are different in scale, usage

pattern and data access. The piece of software that
actually matters is not Torque, but it’s companion

scheduler called Maui.

11

Maui
Users will almost never have to interact with Maui

directly, but it controls which jobs can run on which
worker nodes at what time. It decides on the

prioritisation of all jobs based on a policy document
that describes how we distribute the available

resources to our various user (groups).

12

Fair Share
It is being clever about distributing the job slots in a

variable supply of jobs. With the intent to let no cycles
go to waste, a group can use more than their allocated
share, at least for a while, if no other groups have jobs

queued. This use-above-share is taken into account
when other groups do show up, so eventually things

should balance out.

13

Job Roll-over
This mechanism relies on a steady rate of job slots

becoming available for scheduling decisions. (To be
clear: it only matters if the cluster is full, as scheduling

in a cluster that is not fully occupied is trivial.)

The churn of job slots is guaranteed by the fact that a
job can only last so long.

14

Similar, but Different

Stoomboot Grid

Shared file system
No shared file
system

Accounting by user and
group

Accounting by VO

shorter jobs longer jobs

bursty always full
15

16

It’s the job that’s never started as takes longest to finish
The Stoomboot cluster has short, medium, and long

jobs. There is also an express category.

name maximum duration availability

express 10 minutes immediate

short 4 hours same day

medium 24 hours some days

long 96 hours maybe next week

17

Duration Matters
The choice for these queues is a careful balance

between various interests. We could fill the entire
cluster with long jobs, but that may lock up the system
for the week. That is not nice for users who want to run

a couple of jobs today.

18

Earmarked Hardware
We have some hardware that’s been paid for by

specific groups. It is part of the large shared pool and
others may use it, but the funding group has priority.
We do not preempt or kill jobs, so we only allow short
jobs on these nodes from other groups; this makes the

system available within 4 hours.

19

The Express Queue
Purely for testing purposes, the express queue is for

very short duration jobs with a low maximum of total
jobs.

20

Many Partings
How we came to finally make the move
What choices were made along the way

22

Riddles in the Dark
We learned over the past twenty years how to do

things with Torque and Maui. This introduced a certain
inertia where moving to anything else was going to be

difficult (i.e. a lot of work) and there was hardly a
reason to ever do it. The tooling around this system,
from custom command-line tools to monitoring and

accounting has all been developed over the many
years.

23

Not All who Wander are Lost
With time, we found ourselves further and further from

the common ground of labs that run batch systems.
Torque and Maui were no longer updated (by us) and

out of support. Yet everything kept working.

There was, with intervals, discussion over what
software would replace it (like SLURM).

It was gradually becoming clear that HTCondor was
going to be the right choice.

24

The Eagles are Coming
The (re-)introduction of HTCondor on Nikhef

infrastructure already started in 2020; a researcher
from the gravitational waves group had some grant

money to spend on computers, and the plan was that
we would buy and integrate this into our existing

systems. It became apparent that setting up a
dedicated HTCondor cluster would be a good plan.

25

Ganymede
This cluster (’Ganymede’) was much simpler in setup
than what we have now, it served only a single group
and we implemented practically no special policies.
We learned valuable lessons operating this system

since around 2021.

26

CentOS 7 End of Life
One of the driving forces was the end of support for
CentOS 7. To condense a really long discussion, we

looked at the drama around the RHEL rebuilders and
opted to install Debian as the base OS for most

systems unless it was directly used as a platform by
users (or it was otherwise unfeasible). For these we

would use Alma Linux 9.

27

We really did not want to carry Torque into the new era
on Alma Linux 9 so there was pressure to implement
HTCondor as soon as possible. It turned out that we

managed to do it only for Stoomboot; the Grid is still a
work in progress.

28

Well, master, we’re in a fix and no mistake
There was mounting pressure to get everything done

in time: the upgrades for all our CentOS 7 systems; the
installation of HTCondor on Debian and the move of

Stoomboot.

We managed in the end but it was not a pleasant
experience.

29

The Plan
On the considerations that went into the transition.

31

Goals
We set out to make the transition as smooth as

possible for our users. While some users were already
familiar with HTCondor on other systems (e.g. CERN)
we wanted to give our Torque addicts at least some

sense of familiarity.

32

Towards danger; but not too rashly, nor too straight
We started setting up a brand new cluster with only a
few worker nodes. We invited some early adopters to
be our guinea pigs and validate the basic setup. Then
we sneakily started to move more and more worker
nodes over to the new system and suggested to our

users to join the nice newer (and larger) cluster. A
freshly added set of worker nodes with 128 core AMD

Bergamo CPUs was a great lure.

33

Communication and Support
During the transition phase we spend more time on

user support via various channels. Luckily most of the
users found the transition quite easy and were

reasonably happy with the new system.

34

Turning off the Old System
At some point we had to announce that the old system

was going to be turned off. We allowed the last
stragglers to finish their work so they did not have to

make all kind of late changes in their workflows.

35

Contact with HTCondor Central
We received great support from the HTCondor team in

Wisconsin. A timely visit there, on the heels of an in-
person LIGO meeting, was especially useful to hammer

out the policies and settings.

36

A Far Green Country under a Swift Sunrise
When we started the process of implementing a local

facility under HTCondor control, the mindset was very
much on the classic way of thinking about batch

systems. The consideration was that operators and
users were already familiar with a certain way of
working and the transition would go much more

smoothly if we could shape the new system to look like
the old.

37

This meant that we had to introduce a concept that is
not native to HTCondor: a limited wall time. This can

be done through a job transformation.

Users set the MaxWallTime (directly, or via a job
category) and we add a SYSTEM_PERIODIC_HOLD

condition if this gets exceeded.

38

Re-imagining the queues
We therefore introduced the concept of job categories

(a bad name indeed!) and used a transformation to
enforce the choice of a category and implement

placing the job on hold once it overran the specified
duration.

40

JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) JobCategoryNotDefined JobCategorySetDefaults \
 SetMaxWallTime JobCategoryChecks
SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) JobCategoryNotDefinedCheck JobCategoryInvalidCheck \
 JobCategoryMaxWallTimeCheck
SCHEDD_CLASSAD_USER_MAP_NAMES = $(SCHEDD_CLASSAD_USER_MAP_NAMES) JobCategoryDefaultWallTime \
 JobCategoryMaxWallTime
SYSTEM_PERIODIC_HOLD_NAMES = $(SYSTEM_PERIODIC_HOLD_NAMES) JobCategoryWallTime
SYSTEM_PERIODIC_REMOVE_NAMES = $(SYSTEM_PERIODIC_REMOVE_NAMES) JobMaxHoldTime

JOB_TRANSFORM_JobCategoryNotDefined @=end
 NAME JobCategoryNotDefined
 REQUIREMENTS (JobUniverse =?= 5 && isUndefined(JobCategory))
 SET JobCategoryNotDefined TRUE
@end
SUBMIT_REQUIREMENT_JobCategoryNotDefinedCheck = isUndefined(JobCategoryNotDefined)
SUBMIT_REQUIREMENT_JobCategoryNotDefinedCheck_REASON = "+JobCategory must be defined, see https://__knowledge_base_url__"

Default Walltime (in seconds) per job category
CLASSAD_USER_MAPDATA_JobCategoryDefaultWallTime @=end
* express 600
* short 4*3600
* medium 24*3600
* long 96*3600
@end

Maximum Walltime (in seconds) per job category
CLASSAD_USER_MAPDATA_JobCategoryMaxWallTime @=end
* express 600
* short 4*3600
* medium 24*3600
* long 96*3600
@end

41

JOB_TRANSFORM_JobCategorySetDefaults @=end
 NAME JobCategorySetDefaults
 REQUIREMENTS (JobUniverse =?= 5 && !isUndefined(JobCategory))
 EVALSET JobCategoryDefaultWallTime eval(userMap("JobCategoryDefaultWallTime", toLower(JobCategory)))
 EVALSET JobCategoryMaxWallTime eval(userMap("JobCategoryMaxWallTime", toLower(JobCategory)))
 EVALSET JobCategoryOK (isError(JobCategoryDefaultWallTime) || isError(JobCategoryMaxWallTime)) ? FALSE : TRUE
@end
SUBMIT_REQUIREMENT_JobCategoryInvalidCheck = JobUniverse =?= 5 ? JobCategoryOK : TRUE
SUBMIT_REQUIREMENT_JobCategoryInvalidCheck_REASON = "Invalid JobCategory, see https://__knowledge_base_url__"

JOB_TRANSFORM_SetMaxWallTime @=end
 NAME SetMaxWallTime
 REQUIREMENTS (JobUniverse =?= 5 && isUndefined(MaxWallTime))
 EVALSET MaxWallTime JobCategoryDefaultWallTime
@end

JOB_TRANSFORM_JobCategoryChecks @=end
 NAME SetMaxWallTime
 REQUIREMENTS JobUniverse =?= 5
 EVALSET JobCategoryMaxWallTimeOK MaxWallTime > JobCategoryMaxWallTime ? FALSE : TRUE
@end
SUBMIT_REQUIREMENT_JobCategoryMaxWallTimeCheck = JobUniverse =?= 5 ? JobCategoryMaxWallTimeOK : TRUE
SUBMIT_REQUIREMENT_JobCategoryMaxWallTimeCheck_REASON = strcat("MaxWallTime must be less than or equal to \
 the job category (", JobCategory, ") maximum walltime of ", JobCategoryMaxWallTime, " seconds")

hold running jobs that exceed their max walltime
SYSTEM_PERIODIC_HOLD_JobCategoryWallTime = JobStatus == 2 && time() - EnteredCurrentStatus > MaxWallTime
SYSTEM_PERIODIC_HOLD_JobCategoryWallTime_REASON = strcat("job exceed MaxWallTime of ", MaxWallTime)

delete held jobs after one week
SYSTEM_PERIODIC_REMOVE_JobMaxHoldTime = JobStatus == 5 && time() - EnteredCurrentStatus > 7 * 24 * 3600
SYSTEM_PERIODIC_REMOVE_JobMaxHoldTime_REASON = "job removed after being held for 1 week"

42

Everything in a Container
The time table for the move to HTCondor coincided

with the end of life for CentOS 7. We were worried that
some users would not be prepared to port their work

to a newer operating system and therefore we opted to
run everything in containers from the get go.

44

Because we run everything in a container, the user is
not going to notice that they are on a Debian system

unless they have a close look at the kernel.

HTCondor has support for singularity (or Apptainer)
and we went with three flavours of Enterprise Linux
derivatives: el7, el8, and el9. We also allow users to

bring their own container image.

The following job transformation takes care of setting
the SingularityImage accordingly.

45

Absurdly simple, like most riddles when you see the answer
Submit Requirement: ValidSingularityJob

SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) NotDefinedOSorImageCheck DefinedOSandImageCheck \
 SetSingularityImageFromOSCheck ValidSingularityImage

SUBMIT_REQUIREMENT_ValidSingularityImage = JobUniverse =?= 5 ? (!isUndefined(SingularityImage) && \
 !isError(SingularityImage)) : TRUE

SCHEDD_CLASSAD_USER_MAP_NAMES = $(SCHEDD_CLASSAD_USER_MAP_NAMES) Trust JobImages JobOS

JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) NotDefinedOSorImage DefinedOSandImage SetSingularityImageFromOS

Handle container image
CLASSAD_USER_MAPDATA_JobImages @=end
* el7 /cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/sft/docker/centos7-core:latest
* el8 /cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/sft/docker/alma8-core:latest
* el9 /cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/sft/docker/alma9-core:latest
@end

CLASSAD_USER_MAPDATA_JobOS @=end
* el7 CentOS7
* el8 CentOS8
* el9 AlmaLinux9
@end

46

JOB_TRANSFORM_NotDefinedOSorImage @=end
 NAME NotDefinedOSorImage
 REQUIREMENTS (JobUniverse =?= 5 && isUndefined(SingularityImage) && isUndefined(UseOS))
 SET NotDefinedOSorImage TRUE
@end
SUBMIT_REQUIREMENT_NotDefinedOSorImageCheck = isUndefined(NotDefinedOSorImage)
SUBMIT_REQUIREMENT_NotDefinedOSorImageCheck_REASON = "Either set +UseOS = \"el7\" or \"el8\" or \"el9\"; or \
 set +SingularityImage = (path to container image file or unpackaged container dir)"

JOB_TRANSFORM_DefinedOSandImage @=end
 NAME DefinedOSandImage
 REQUIREMENTS (JobUniverse =?= 5 && !isUndefined(SingularityImage) && !isUndefined(UseOS))
 SET DefinedOSandImage TRUE
@end
SUBMIT_REQUIREMENT_DefinedOSandImageCheck = isUndefined(DefinedOSandImage)
SUBMIT_REQUIREMENT_DefinedOSandImageCheck_REASON = "Specify either +UseOS or +SingularityImage not both"

JOB_TRANSFORM_SetSingularityImageFromOS @=end
 NAME SetSingularityImageFromOS
 REQUIREMENTS (JobUniverse =?= 5 && isUndefined(SingularityImage) && !isUndefined(UseOS))
 EVALSET MappedImage userMap("JobImages", toLower(UseOS))
 EVALSET SingularityImage (MappedImage =?= Undefined) ? Error : MappedImage
 SET SetSingularityImageFromOS TRUE
@end
SUBMIT_REQUIREMENT_SetSingularityImageFromOSCheck = isUndefined(SetSingularityImageFromOS) ? \
 TRUE : !isError(SingularityImage)
SUBMIT_REQUIREMENT_SetSingularityImageFromOSCheck_REASON = "The requested OS is not valid. Set \
 +UseOS = \"el7\" or \"el8\" or \"el9\""

47

Accounting Groups
One of the more complicated tweaks of the original

system was that we accounted users by their groups.

For instance the alice group is treated as a single entity
for the sake of the use of their share, so one

particularly productive user could take a considerable
chunk out of that.

49

Special Treatment
To complicate matters further, we have some groups

that have contributed entire subclusters through their
funding. This entitles them to have priority use on the

hardware they paid for.

50

In the transition to HTCondor we loosened the ties to
the specific hardware somewhat, because there is

nothing special about one worker node or another; a
cycle is a cycle. We acknowledge their entitlement to a
certain amount of benchmark units that is equivalent

to what the hardware provides.

We still struggle to define a meaningful configuration
that would reflect the respective priorities for these

groups.

51

SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) ValidAcctGroup
SCHEDD_CLASSAD_USER_MAP_NAMES = $(SCHEDD_CLASSAD_USER_MAP_NAMES) PosixGroups QuotaGroups
JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) ValidAcctGroup SetAccountingGroupDefault SetAccountingGroupRequested

CLASSAD_USER_MAPFILE_PosixGroups = /etc/condor/user-group.map

Groups with quotas, plus datagrid for testing
CLASSAD_USER_MAPDATA_QuotaGroups @=end
* smefit smefit
* gravwav gravwav
* datagrid datagrid
@end

52

Check if the user is a member of the posixgroup that they requested
via accounting_group (which is the AcctGroup Classad)
JOB_TRANSFORM_ValidAcctGroup @=end
 NAME ValidAcctGroup
 REQUIREMENTS (JobUniverse =?= 5 || JobUniverse =?= 7) && !isUndefined(AcctGroup)
 EVALSET PosixGroup = userMap("PosixGroups", Owner, AcctGroup)
 EVALSET isMemberofPosixGroup = PosixGroup == AcctGroup
@end
SUBMIT_REQUIREMENT_ValidAcctGroup = isUndefined(AcctGroup) || isMemberofPosixGroup
SUBMIT_REQUIREMENT_ValidAcctGroup_REASON = "Invalid accounting_group set. accounting_group must \
 either be undefined, or set to a posix group that you are a member of."

JOB_TRANSFORM_SetAccountingGroupDefault @=end
 NAME SetAccountingGroupDefault
 REQUIREMENTS (JobUniverse =?= 5 || JobUniverse =?= 7) && isUndefined(AcctGroup)
 EVALSET AcctGroupUser = Owner
 EVALSET AccountingGroup = Owner
@end

JOB_TRANSFORM_SetAccountingGroupRequested @=end
 NAME SetAccountingGroupRequested
 REQUIREMENTS (JobUniverse =?= 5 || JobUniverse =?= 7) && !isUndefined(AcctGroup)
 EVALSET isQuotaGroup = userMap("QuotaGroups", AcctGroup)
 EVALSET AcctGroupUser = Owner
 EVALSET AccountingGroup = isUndefined(isQuotaGroup) ? Owner : join(".", AcctGroup, AcctGroupUser)
@end

IMMUTABLE_JOB_ATTRS = $(IMMUTABLE_JOB_ATTRS) AccountingGroup

53

The Express Negotiator
We’ve set aside a machine whose slots will only go to

jobs with a very short deadline. Basically these are
only going to be test jobs. By combining two
negotiators, one for express jobs and one for

everything else, we make sure these express jobs make
it to that one node.

regular negotiator
NEGOTIATOR_SLOT_CONSTRAINT = !regexp("wn-sate-079", Machine)

express negotiator
NEGOTIATOR_SLOT_CONSTRAINT = regexp("wn-sate-079", Machine)
Match only specific jobs
NEGOTIATOR_JOB_CONSTRAINT = MaxWallTime < 600

55

Layout of nodes

stbc-i1

Access Point Negotiator

Execution Point 1 Execution Point 2 Execution Point 3

stbc-i2 stbc-i3

57

Access Point
We have a single access point on an old worker node.
The choice for a bit of beefy hardware was due to the
expected load on the machine. We do not allow users

to log on to the AP at all, but they can reach it from any
of the interactive nodes.

58

The Road Goes Ever On
Now that our local cluster has successfully made the
transition to HTCondor, it is time to look at the Grid

cluster. Although the parameters are different, we’ve
built up enough confidence with HTCondor that we

should be able to set up a cluster to suit our needs. But
work on this has only just begun.

The advantage is that users won’t notice anything at
all, as the front end system (ARC-CE) stays the same.

60

The Cracks of Doom
We did not want to carry our ageing Torque system to
a newer platform, but we ended up doing this for the

Grid anyway because there was no time to implement
HTCondor for grid before CentOS7 EOL.

It turns out that Torque would run on Alma Linux 9, but
it is beginning to show some cracks.

We will continue working on making this transition.

61

62

Better Implementation of Priorities
We are still tweaking the Stoomboot system. The
system that schedules and prioritises jobs from

different users and groups needs some work.

63

He that breaks a thing to find out what
it is has left the path of wisdom.

— Gandalf the Grey

Go not to the HTCondor developers for
counsel, for they will say both no and

yes.

— Frodo

64

