AMD

AMD INSTINCTTM GPUs CAPABILITY AND CAPACITY AT SCALE

<u>Samuel Antao</u>, Suyash Tandon, Michael Rowan, Nicholas Malaya HTCondor Autumn Workshop, September 26th, 2024

AMD INSTINCT[™] GPU FOOTPRINT IN HPC & AI **PROVEN AT-SCALE WINS**

AMD PLATFORM FOR ACCELERATED COMPUTING

LEADERSHIP IN HPC & AI FOR EXASCALE-CLASS COMPUTING

OUR JOURNEY IN GPU ACCELERATION

AMD Instinct[™] MI100 AMD CDNA[™]

Ecosystem Growth

First purpose-built GPU architecture for the data center

AMD Instinct[™] MI200 AMD CDNA[™] 2

Driving HPC and AI to a New Frontier

First purpose-built GPU powering discovery at Exascale

AMD Instinct[™] MI300 AMD CDNA[™] 3

Data Center APU

& Discrete GPU

Breakthrough architecture designed for leadership efficiency and performance for AI and HPC

OPEN SOFTWARE PLATFORM FOR GPU COMPUTE

- Unlocked GPU Power To
 Accelerate Computational Tasks
- Optimized for HPC and Deep
 Learning Workloads at Scale
- Open Source Enabling Innovation,
 Differentiation, and Collaboration

Ponchmarks & Ann Sunnart	Optimized Training/Inference Models & Applications							
Benchmarks & App Support	MLPERF	HPL/HP	PCG Life	Science	Geo Scienc	ce	Physics	
Operating Systems Support	RHEL		CentOS		SLES		Ubuntu®	
Cluster Deployment	Singularit	ty Ki	ubernetes®	bernetes® Docker		slurm		
Framework Support	Kokkos	Kokkos/RAJA		PyTorch		TensorFlow		
Libraries	BLAS SOLVER	RAND ALUTION	FFT SPARSE	MIGrap THRUS	hX MIVis	sionX pen	PRIM RCCL	
Programming Models	OpenM	OpenMP® API		OpenCL™		ΗΙΡ ΑΡΙ		
Development Toolchain	Compiler	Profiler	Tracer	Debugg	ger hip	oify	GPUFort	
Drivers & Runtime	GPU Device Drivers and ROCm Run-Time							
Deployment Tools	ROCm Valid	ROCm Validation Suite ROCm Data Center Tool			ROCm SMI			

TRANSITIONING WORKLOADS TO INSTINCT GPUS

LOW FRICTION SOFTWARE PORTING FOR EXISTING NVIDIA USERS TO AMD

AMDA UNIFIED MEMORY APU MI300A ARCHITECTURE BENEFITS

AMD CDNA[™] 2 Coherent Memory Architecture

AMD CDNA[™] 3 Unified Memory APU Architecture

- Eliminate Redundant Memory Copies
- No programming distinction between host and device memory spaces
- High performance, finegrained sharing between CPU and GPU processing elements
- Single process can address all memory, compute elements on a socket

7 AMD Instinct – GPU capability and capacity at scale | HTCondor Autumn Workshop 2024 | PUBLIC

AMD together we advance_

APU PROGRAMMING MODEL

CPU CODE	GPU CODE	APU CODE		
double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);	<pre>double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize); hipMalloc(∈_d, Msize); hipMalloc(&out_d, Msize);</pre>	double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);		
<pre>for (int i=0; i<m; cpu_func(in_h,="" i++)="" in_h[i]=";" initialize="" m);<="" out_h,="" pre=""></m;></pre>	<pre>for (int i=0; i<m; gpu_func<<="" hipmemcpy(in_d,in_h,msize);="" i++)="" in_h[i]=";" initialize="">>(in_d, out_d, M); hipDeviceSynchronize(); hipMemcpy(out_h,out_d,Msize);</m;></pre>	<pre>for (int i=0; i<m; gpu_func<<="" i++)="" in_h[i]=";" initialize="">>(in_h, out_h, M); hipDeviceSynchronize();</m;></pre>		
<pre>for (int i=0; i<m; cpu-process="out_h[i];</pre" i++)=""></m;></pre>	<pre>for (int i=0; i<m; cpu-process="out_h[i];</pre" i++)=""></m;></pre>	for (int i=0; i <m; cpu-process<br="" i++)=""> = out_h[i];</m;>		

- GPU memory allocation on Device
- Explicit memory management between CPU & GPU
- Synchronization Barrier

APU PROGRAMMING: PERFORMANCE IMPLICATIONS

GPU CODE

- GPU memory allocation on Device
- Explicit memory management between CPU & GPU
- Synchronization Barrier

APU PROGRAMMING: PERFORMANCE IMPLICATIONS

APU CODE

- GPU memory allocation on Device
- Explicit memory management between CPU & GPU
- Synchronization Barrier

PROGRAMMING ACROSS FRAMEWORKS/COMPILERS

OpenMP [®] CODE	RAJA CODE	KOKKOS CODE				
<pre>#pragma omp requires unified_shared_memory double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);</pre>	double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);	double* in_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);				
<pre>for (int i=0; i<m; i++)="" in_h[i]=";</pre" initialize=""></m;></pre>	<pre>for (int i=0; i<m; i++)="" in_h[i]=";</pre" initialize=""></m;></pre>	<pre>for (int i=0; i<m; i++)="" in_h[i]=";</pre" initialize=""></m;></pre>				
<pre>#pragma omp target { }</pre>	RAJA::forall< exec_policy >(arange, [=] (int i) { });	<pre>Kokkos::parallel_for(M, [=] (const int i){ }; Kokkos::fence();</pre>				
<pre>for (int i=0; i<m; cpu-process="out_h[i];</pre" i++)=""></m;></pre>	for (int i=0; i <m; cpu-process<br="" i++)=""> = out_h[i];</m;>	for (int i=0; i <m; cpu-process<br="" i++)=""> = out_h[i];</m;>				
 GPU memory allocation on Device 						

together we advance_

- Explicit memory management between CPU & GPU
- Synchronization Barrier

HIP STANDARD PARALLELISM

- AMD providing support for advanced C++ in LLVM: today, entirely Open Source Software (OSS)
- Only supports par_unseq acceleration currently
- Compiler support implementation upstreamed
- Available in recent ROCm releases
- Re-uses HIP support in CLANG/LLVM and algorithms from libraries (rocThrust)
- Available today: https://github.com/ROCmSoftwarePlatform/roc-stdpar
- Several applications tested and running (LULESH, etc.)

AMD PARTNERSHIPS IN HPC AND AI

- Centers of Excellence
- In 2023, AMD HPC teams supported many focused training activities
 - >100 days of training, >3000 participants
 - Trainings, hackathons, private hackathons, virtual hackathons
- Focused on application porting, tuning, and analysis
 - Learnings are used to influence our hardware and software roadmap (co-design)
- Papers and dissemination of best practices

Commitment to Open Source Software
 ROCm / rocHPL

RESEARCH-ARTICLE

🕊 in 🥶 f 🗳

LUM

Experiences readying applications for Exascale

 Authors:
 Nicholas Malaya,
 Bronson Messer,
 Joseph Glenski,
 Antigoni Georgiadou,
 Justin Lietz,

 Kalyana Gottiparthi,
 Marc Day,
 Jackie Chen,
 Jon Rood,
 Lucas Esclapez,
 James White III,
 + 21

 Authors Info & Claims

SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis • November 2023 • Article No.: 53 • Pages 1–13 • https://doi.org/10.1145/3581784.3607065

Announcing the NeurIPS 2023 Paper Awards

Scaling Data-Constrained Language Models

Authors: Niklas Muennighoff · Alexander Rush · Boaz Barak · Teven Le Scao · Nouamane Tazi Aleksandra Piktus · Sampo Pyysalo · Thomas Wolf · Colin Raffel

OVERSUBSCRIBING THE GPU

IMPROVING KERNEL THROUGHPUT

- Instinct GPUs provide HW support to run concurrently multiple contexts
- Process isolation management of virtual memory per process
- Number of queues can be controlled at runtime with the environment variable GPU_MAX_HW_QUEUES
- Throughput within a process
 - Multiple host threads concurrently use the same HIP context
 - Use case:
 - Several tiny kernels and data transfers running concurrently
 - Typical when CPU applications are being ported to GPUs
- Throughput across processes
 - Same GPU supporting multiple HIP contexts from different processes
 - Reliance on GPU driver to multiplex contexts
 - No need for software solutions to multiplex contexts in time

16 AMD Instinct – GPU capability and capacity at scale | HTCondor Autumn Workshop 2024 | PUBLIC

OVERSUBSCRIBING THE GPU IMPROVING KERNEL THROUGHPUT – MULTIPLE THREADS

- Allowing a process to use more GPU HW queues (MI250X Instinct GPU)
 - export GPU_MAX_HW_QUEUES=4 (default)

export GPU_MAX_HW_QUEUES=22

- We can optimize throughput and be less prone to tail effects by increasing number of queues properly
- Throughput observed with threading similar to throughput over multiple processes:

7 6359								
2 29602	<pre><bar pre="" s="" s<=""></bar></pre>	S S S S S S S S S S S	S S S S S S S S	SSSSSSS	S S S S S S S S	SSSSSSSS	SSSSSSSS	S S S S S S S S
4 33958	<pre><bar pre="" s="" s<=""></bar></pre>	S S S S S S S S S S S S S	S S S S S S S S S S	S S S S S S S S S	S S S S S S S S S S	S S S S S S S S S	ssssss Max	KHW queues set
6 33976	<pre> s s s s s s s</pre>	S S S S S S S S S S	S S S S S S S	s s s s s s s s	s s s s s s s	5 S S S S S S S	sssssss	+- 10
3 34287	<pre><bar pre="" s="" s<=""></bar></pre>	s s s s s s s s s s s s s	s s s s s s s s s s s	s s s s s s s s s	SSSSSSSSSS	s s s s s s s s s s	S S S S S S S	to 16
5 34379	<pre><bar pre="" s="" s<=""></bar></pre>	S S S S S S S S S S S S S	S S S S S S S S	s s s s s s s s s	S S S S S S	s s s s s s s	S S S S S S S	S S S S S
1 34427	<pre><bar pre="" s="" s<=""></bar></pre>	s s s s s s s s s s	SSSSSSSS	SSSSSSS	S S S S S S	S S S S S S S S S	SSSSSSSSSS	5 S S S S S S S S S
Thread 1	S S S S S S S S S S S	S S S S S S S S S S S S	s s s s s s s s s s	5 S S S S S S S S	S S S S S S S S	S S S S S S S S S	S S S S S S S S	
Thread 1	SSSSSSSS	S S S S S S S S S	S S S S S S S	S S S S S	s s s s s s s s	SSSSSSS	S S S S S S	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Thread 1	SSSSSSSSS	S S S S S S S S S	SSSSSSSSS	s s s s s s s	S S S S S	S S S S S S S	sssssss	iultiple processes
Thread 1	s s s s s s s	S S S S S S S S S S S	s s s s s s s s s	S S S S S S	s s s s s s s s	SSSSSSSS	S S S S S S S	collated profile
Thread 1	S S S S S S S S	S S S S S S S S S S S S S	S S S S S S S S S S S	s s s s s s s s s	s s s s s s s s s	s s s s s s s s s s	S S S S	
Thread 1	S S S S S S S	S S S S S S S S S	S S S S S S S S	s s s s s s s s	SSSSSSS	S S S S S S	S S S S S S	S S S S S S S S S S S
								AMDZ

together we advance_

17 AMD Instinct – GPU capability and capacity at scale | HTCondor Autumn Workshop 2024 | PUBLIC

LEVERAGING THE APU PROGRAMMING MODEL

- APU removing bottle necks in OpenFOAM simulations
 - OpenMP to enable offloading larger portions of code
 - APU avoids time spend in data migration
- Tandon et al. Porting HPC Applications to AMD Instinct MI300A Using Unified Memory and OpenMP
 - <u>https://arxiv.org/abs/2405.00436</u>

AMD ROCM DEVELOPER HUB

Engage with AMD ROCm[™] Platform Experts Participate in AMD ROCm Webinar Series

Post questions, view FAQs in Community Forum

Increase Understanding

Purchase AMD ROCm Text Book View the latest news and good practices in the Blogs

Get Started Using AMD ROCm[™]

AMD ROCm Documentation on GitHub Download the Latest Version of AMD ROCm

DISCLAIMER AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Instinct, EPYC, Infinity Fabric, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered trademark of PCI-SIG Corporation. OpenCL[™] is a registered trademark used under license by Khronos. The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc. PyTorch, the PyTorch logo and any related marks are trademarks of Facebook, Inc. OPENFOAM[®] is a registered trademark of OpenCFD Limited, producer and distributor of the OpenFOAM software via <u>www.openfoam.com</u>. Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

ANDZ

