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Kubernetes is an open-source container orchestration system.

What does this mean?

‣ Open-source: Started by Google engineers, now developed by a large 

community and run under the auspices of the Cloud Native Computing 

Foundation.

‣ Container: Atomic unit of functionality, the “pod”, is composed of one or 

more containers working together.

‣ Orchestration: A single object can tie together multiple aspects of a 

service – including dependencies (e.g., database) and network 

requirements (firewall, DNS).

Kubernetes

Kubernetes originates from the Greek 

κυβερνήτης (kubernḗtēs), meaning 

governor, 'helmsman' or 'pilot'.

https://www.cncf.io/
https://www.cncf.io/
https://en.wikipedia.org/wiki/Kubernetes
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‣ You can run a static HTCondor pool within a Kubernetes cluster:

‣ HTCSS team publishes a reference central manager, AP, and EP 

container image.

‣ Going from container image to a deployment is left as an exercise for the 

user.

‣ The OSPool runs its central manager inside two Kubernetes clusters.

‣ We use a “GitOps” methodology, using a shared base deployment inside 

a git repository.  When changes are committed to the base, they are 

synchronized by the Flux operator to the production clusters.

‣ However, a statically-sized pool is rather boring: it’s a fairly “vanilla” 

deployment of an application on Kubernetes.

‣ Still, it’d be nice if we packaged this in a Helm chart. 

Let’s skip the boring parts

Kubernetes Lingo:

• A custom resource 

definition (CRD) is an 

custom object type that can 

extend Kubernetes.

• An operator is an 

extension to Kubernetes 

that manages custom 

objects for applications.
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‣ The OSPool operators publish a “backfill container” image.

‣ Given a token, the container will start an EP that connects to the OSPool.

‣ Cluster administrators can setup a Kubernetes deployment that launches enough pods to saturate the cluster.

‣ Set the priority low enough so these are always preempted if another pod needs to run.

‣ Great for otherwise-idle resources!

‣ Not great if you care that OSPool may run out of jobs for your EPs.

‣ Not great if you want to balance resources across multiple pools.

Boring Case Study: OSPool Backfill

Backfill is boring.

What about dynamic workloads?

https://osg-htc.org/docs/resource-sharing/os-backfill-containers/
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‣ We want the HTCondor pool to grow and shrink based on demand or scheduling policy.

Something interesting – dynamic pools and annexes

HTCondor System

Access Point

HTCondor Pool

Central 

Manager

HTCondor Annex

EP EP EP EP…

EP EP EP EP…
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Shrink when EPs are idle, grow when there is demand – give Kubernetes scheduler a chance to make decisions!

Desired Behavior
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Shrink when EPs are idle, grow when there is demand – give Kubernetes scheduler a chance to make decisions!

Desired Behavior
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‣ “Dynamic deployment”: Use the Kubernetes “deployment” object which manages a configured set of identical 

EP pods.

‣ Kubernetes will automatically restart any pod in a deployment that dies.

‣ The “Horizontal Pod Autoscaler” (HPA) component will scale the deployment up and down based on need.

‣ “Glidein model”: Have a standalone service create a Kubernetes “job” / pod.

‣ The service creates according to the need it detects.

‣ Ephemeral: when the K8S job finishes (or errors), the pod goes away.

Two starting models for Kubernetes
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PATh Facility Cluster

‣ At the PATh Facility cluster, we took the “dynamic deployment” 

route.

‣ A central service, the ‘htcondor-autoscale-manager’ (ASM), 

queries the collector for the state of the EPs and creates an 

“occupancy metric”:

‣ <1 indicates EPs are idle and need to be shut down

‣ >1 indicates

‣ The Prometheus operator scrapes the ASM’s metrics.

‣ The Prometheus adapter converts the Prometheus metric into 

the Kubernetes metric system.

Case Study: PATh Facility

Deploy.

EP EP

EP EP

K8S Metrics

CM

Prom

ASM

HPA

https://github.com/opensciencegrid/htcondor-autoscale-manager
https://github.com/prometheus-operator/prometheus-operator
https://github.com/kubernetes-sigs/prometheus-adapter
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PATh Facility Cluster

‣ The Horizontal Pod Autoscaler (HPA) will adjust the number of 

pods in the deployment to bring the occupancy metric to 1.

‣ For scale-down, how does Kubernetes know which pod to 

preempt?

‣ Every cycle, the ASM calculates a ‘preemption cost’ based on 

the work that would be lost on preemption.

‣ The ASM annotates each pod with the preemption cost.

‣ The Kubernetes scheduler will select the lower-cost pod, 

preempting the idle one.

‣ Otherwise, it selects randomly!

PATh Facility – Scaling up and down

Deploy.

EP EP

EP EP

K8S Metrics

HPA

ASM
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‣ Q: How does the ASM know when a new EP is needed?

A: Offline ads!

‣ The ASM will take a snapshot of an EP’s slot ad and advertise it to the collector as a “fake” offline slot.

‣ Assumption: all EPs in the same deployment are “the same”.

‣ When the negotiator has a match for the offline ad, it will annotate the ad.

‣ This annotation says “I could have used this slot if it was online”

‣ During next ASM cycle, it will raise the occupancy metric and a new pod will launch.

PATh Facility - Scaling up

Impact: No configuration, no 

ClassAd expressions; the negotiator 

does all the work!
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What’s wrong with this model?

‣ Pod auto-restarts when idle: bad at releasing resources when they are incorrectly requested.

‣ Prevents K8S from pulling updates automatically

‣ Requires additional operators, even in simple configuration:

‣ Functionality requires a Prometheus setup and the Prometheus Adapter (latter is installed at the cluster level).

‣ “Control loop” grows or shrinks a single node at a time.  Slow ramp-up for shifting workloads.

Advantages?

‣ Minimal ClassAd configuration: relies solely on the negotiator to indicate load.

PATh Facility – Upsides & Downsides
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‣ The National Research Platform (NRP) project operates a 

stretched Kubernetes cluster, Nautilus, with hosts spanning 

the nation.

Case Study: National Research Platform

Nautilus

Job.

EP EP

EP EP
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‣ The NRP has a provisioner component that will create new 

K8S jobs containing an EP pod.

‣ The provisioner runs a periodic cycle where it (a) determines 

the current EP states, (b) determines the load, and (c) 

creates new jobs accordingly.

‣ When an EP is idle for a fixed period, it’ll exit.

‣ Returns resources back to the cluster.

‣ Provisioner needs to be configured with the EP image to use 

and the “needed resource” logic.

Case Study: National Research Platform

Nautilus

Job.

EP

CM

Prov
Job.

EP
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https://github.com/sfiligoi/prp-htcondor-portal
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‣ Scaling down is natural:

‣ When no job has matched for X minutes, the EP shuts off.  All resources are cleaned up.

‣ Analogous to a pilot / glidein-based system.

‣ Scaling up is complicated:

‣ Provisioner must be configured to query for specific jobs.

‣ Based on # of idle jobs, decides to launch new EPs.

‣ Problem: provisioner query != negotiation.  Relies on administrator to hand-write the expressions.

‣ If administrator “gets it wrong”, then EP will idle and the resources will be wasted.

NRP: Scaling Up, Scaling Down
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‣ The PATh Facility model is limited by 

deployment model: difficult to update the 

container image.

‣ The NRP model requires the administrator to 

write expressions matching jobs.

‣ Quite difficult to get correct: near-impossible 

for GPU jobs.

Comparisons: PATh Facility vs NRP

What condor_q query do you write to count jobs if 

the job requirements are like this:

Requirements =

   ((Target.CUDADriverVersion >= 12.1) &&

    (Target.GPUs_GlobalMemoryMb > 45000) &&

    (Target.GPUs_GlobalMemoryMb < 60000)) &&

    …

E.g., NRP needs to query for all jobs that could 

utilize a host with 48GB of GPU memory but the 

job’s GPU memory request is embedded in the 

Requirements expression.
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‣ The HTCSS team is working on its own Kubernetes operator, the “glidein manager”.

‣ Serves as a “CE”: an aggregation point for all EPs within a cluster.

‣ Purpose-built: aiming to tackle authorization models for the annex.

‣ Will provide an opportunity to combine the PATh Facility and the NRP models:

‣ No penalties of deployment as in PATh Facility.

‣ Can use offline ads / negotiatior, avoiding the expressions in the NRP model.

‣ Glidein Manager will serve as a CE, also managing the creation of the EP and any necessary 

credentials.

Looking into the future: A HTCondor Operator

Lead 

developer 

for the 

“glidein 

manager”.



Questions?

This project is supported by the National Science Foundation 

under Cooperative Agreements OAC-2030508. Any opinions, 

findings, conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect 

the views of the National Science Foundation.
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