
Brian Bockelman, 25 September 2024

Understanding the possibilities

Kubenettes HTCSS

Subtitle

morgridge.org

Kubernetes is an open-source container orchestration system.

What does this mean?

‣ Open-source: Started by Google engineers, now developed by a large

community and run under the auspices of the Cloud Native Computing

Foundation.

‣ Container: Atomic unit of functionality, the “pod”, is composed of one or

more containers working together.

‣ Orchestration: A single object can tie together multiple aspects of a

service – including dependencies (e.g., database) and network

requirements (firewall, DNS).

Kubernetes

Kubernetes originates from the Greek

κυβερνήτης (kubernḗtēs), meaning

governor, 'helmsman' or 'pilot'.

https://www.cncf.io/
https://www.cncf.io/
https://en.wikipedia.org/wiki/Kubernetes

Subtitle

morgridge.org

‣ You can run a static HTCondor pool within a Kubernetes cluster:

‣ HTCSS team publishes a reference central manager, AP, and EP

container image.

‣ Going from container image to a deployment is left as an exercise for the

user.

‣ The OSPool runs its central manager inside two Kubernetes clusters.

‣ We use a “GitOps” methodology, using a shared base deployment inside

a git repository. When changes are committed to the base, they are

synchronized by the Flux operator to the production clusters.

‣ However, a statically-sized pool is rather boring: it’s a fairly “vanilla”

deployment of an application on Kubernetes.

‣ Still, it’d be nice if we packaged this in a Helm chart.

Let’s skip the boring parts

Kubernetes Lingo:

• A custom resource

definition (CRD) is an

custom object type that can

extend Kubernetes.

• An operator is an

extension to Kubernetes

that manages custom

objects for applications.

Subtitle

morgridge.org

‣ The OSPool operators publish a “backfill container” image.

‣ Given a token, the container will start an EP that connects to the OSPool.

‣ Cluster administrators can setup a Kubernetes deployment that launches enough pods to saturate the cluster.

‣ Set the priority low enough so these are always preempted if another pod needs to run.

‣ Great for otherwise-idle resources!

‣ Not great if you care that OSPool may run out of jobs for your EPs.

‣ Not great if you want to balance resources across multiple pools.

Boring Case Study: OSPool Backfill

Backfill is boring.

What about dynamic workloads?

https://osg-htc.org/docs/resource-sharing/os-backfill-containers/

Subtitle

morgridge.org

‣ We want the HTCondor pool to grow and shrink based on demand or scheduling policy.

Something interesting – dynamic pools and annexes

HTCondor System

Access Point

HTCondor Pool

Central

Manager

HTCondor Annex

EP EP EP EP…

EP EP EP EP…

Subtitle

morgridge.org

Shrink when EPs are idle, grow when there is demand – give Kubernetes scheduler a chance to make decisions!

Desired Behavior

Kubernetes Cluster

K8S WN

EP EP

EP EP

K8S WN

EP EP

EP EP

EP = busy EP EP = idle EP

Kubernetes Cluster

K8S WN

EP EP

EP EP

K8S WN

EP

Other

Subtitle

morgridge.org

Shrink when EPs are idle, grow when there is demand – give Kubernetes scheduler a chance to make decisions!

Desired Behavior

Kubernetes Cluster

K8S WN

EP EP

EP EP

K8S WN

EP

EP = busy EP EP = idle EP

Kubernetes Cluster

K8S WN

EP EP

EP EP

K8S WN

EP EP

EP

Access

Point

EP

Subtitle

morgridge.org

‣ “Dynamic deployment”: Use the Kubernetes “deployment” object which manages a configured set of identical

EP pods.

‣ Kubernetes will automatically restart any pod in a deployment that dies.

‣ The “Horizontal Pod Autoscaler” (HPA) component will scale the deployment up and down based on need.

‣ “Glidein model”: Have a standalone service create a Kubernetes “job” / pod.

‣ The service creates according to the need it detects.

‣ Ephemeral: when the K8S job finishes (or errors), the pod goes away.

Two starting models for Kubernetes

Subtitle

morgridge.org

PATh Facility Cluster

‣ At the PATh Facility cluster, we took the “dynamic deployment”

route.

‣ A central service, the ‘htcondor-autoscale-manager’ (ASM),

queries the collector for the state of the EPs and creates an

“occupancy metric”:

‣ <1 indicates EPs are idle and need to be shut down

‣ >1 indicates

‣ The Prometheus operator scrapes the ASM’s metrics.

‣ The Prometheus adapter converts the Prometheus metric into

the Kubernetes metric system.

Case Study: PATh Facility

Deploy.

EP EP

EP EP

K8S Metrics

CM

Prom

ASM

HPA

https://github.com/opensciencegrid/htcondor-autoscale-manager
https://github.com/prometheus-operator/prometheus-operator
https://github.com/kubernetes-sigs/prometheus-adapter

Subtitle

morgridge.org

PATh Facility Cluster

‣ The Horizontal Pod Autoscaler (HPA) will adjust the number of

pods in the deployment to bring the occupancy metric to 1.

‣ For scale-down, how does Kubernetes know which pod to

preempt?

‣ Every cycle, the ASM calculates a ‘preemption cost’ based on

the work that would be lost on preemption.

‣ The ASM annotates each pod with the preemption cost.

‣ The Kubernetes scheduler will select the lower-cost pod,

preempting the idle one.

‣ Otherwise, it selects randomly!

PATh Facility – Scaling up and down

Deploy.

EP EP

EP EP

K8S Metrics

HPA

ASM

Subtitle

morgridge.org

‣ Q: How does the ASM know when a new EP is needed?

A: Offline ads!

‣ The ASM will take a snapshot of an EP’s slot ad and advertise it to the collector as a “fake” offline slot.

‣ Assumption: all EPs in the same deployment are “the same”.

‣ When the negotiator has a match for the offline ad, it will annotate the ad.

‣ This annotation says “I could have used this slot if it was online”

‣ During next ASM cycle, it will raise the occupancy metric and a new pod will launch.

PATh Facility - Scaling up

Impact: No configuration, no

ClassAd expressions; the negotiator

does all the work!

Subtitle

morgridge.org

What’s wrong with this model?

‣ Pod auto-restarts when idle: bad at releasing resources when they are incorrectly requested.

‣ Prevents K8S from pulling updates automatically

‣ Requires additional operators, even in simple configuration:

‣ Functionality requires a Prometheus setup and the Prometheus Adapter (latter is installed at the cluster level).

‣ “Control loop” grows or shrinks a single node at a time. Slow ramp-up for shifting workloads.

Advantages?

‣ Minimal ClassAd configuration: relies solely on the negotiator to indicate load.

PATh Facility – Upsides & Downsides

Subtitle

morgridge.org

‣ The National Research Platform (NRP) project operates a

stretched Kubernetes cluster, Nautilus, with hosts spanning

the nation.

Case Study: National Research Platform

Nautilus

Job.

EP EP

EP EP

CM

Prov

Subtitle

morgridge.org

‣ The NRP has a provisioner component that will create new

K8S jobs containing an EP pod.

‣ The provisioner runs a periodic cycle where it (a) determines

the current EP states, (b) determines the load, and (c)

creates new jobs accordingly.

‣ When an EP is idle for a fixed period, it’ll exit.

‣ Returns resources back to the cluster.

‣ Provisioner needs to be configured with the EP image to use

and the “needed resource” logic.

Case Study: National Research Platform

Nautilus

Job.

EP

CM

Prov
Job.

EP

AP

https://github.com/sfiligoi/prp-htcondor-portal

Subtitle

morgridge.org

‣ Scaling down is natural:

‣ When no job has matched for X minutes, the EP shuts off. All resources are cleaned up.

‣ Analogous to a pilot / glidein-based system.

‣ Scaling up is complicated:

‣ Provisioner must be configured to query for specific jobs.

‣ Based on # of idle jobs, decides to launch new EPs.

‣ Problem: provisioner query != negotiation. Relies on administrator to hand-write the expressions.

‣ If administrator “gets it wrong”, then EP will idle and the resources will be wasted.

NRP: Scaling Up, Scaling Down

Subtitle

morgridge.org

‣ The PATh Facility model is limited by

deployment model: difficult to update the

container image.

‣ The NRP model requires the administrator to

write expressions matching jobs.

‣ Quite difficult to get correct: near-impossible

for GPU jobs.

Comparisons: PATh Facility vs NRP

What condor_q query do you write to count jobs if

the job requirements are like this:

Requirements =

 ((Target.CUDADriverVersion >= 12.1) &&

 (Target.GPUs_GlobalMemoryMb > 45000) &&

 (Target.GPUs_GlobalMemoryMb < 60000)) &&

 …

E.g., NRP needs to query for all jobs that could

utilize a host with 48GB of GPU memory but the

job’s GPU memory request is embedded in the

Requirements expression.

Subtitle

morgridge.org

‣ The HTCSS team is working on its own Kubernetes operator, the “glidein manager”.

‣ Serves as a “CE”: an aggregation point for all EPs within a cluster.

‣ Purpose-built: aiming to tackle authorization models for the annex.

‣ Will provide an opportunity to combine the PATh Facility and the NRP models:

‣ No penalties of deployment as in PATh Facility.

‣ Can use offline ads / negotiatior, avoiding the expressions in the NRP model.

‣ Glidein Manager will serve as a CE, also managing the creation of the EP and any necessary

credentials.

Looking into the future: A HTCondor Operator

Lead

developer

for the

“glidein

manager”.

Questions?

This project is supported by the National Science Foundation

under Cooperative Agreements OAC-2030508. Any opinions,

findings, conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

