
Heterogeneous Tier2 Cluster

& Power Efficiency Studies

@ ScotGrid Glasgow

Dr. Emanuele Simili HTCondor Autumn WorkShop NIKHEF - 27 September 2024

Abstract
With the latest addition of 4k ARM cores, the ScotGrid Glasgow facility is a pioneering example of a

heterogeneous WLCG Tier2 site. The new hardware has enabled large-scale testing by experiments and

detailed investigations into ARM performance in a production environment.

I will present an overview of our computing cluster, which uses HTCondor as the batch system combined

with ARC-CE as the front-end for job submission, authentication, and user mapping, with particular

emphasis on the dual queue management. I will also touch on our monitoring and central logging system,

built on Prometheus, Loki, and Grafana, and describe the custom scripts we use to extract job information

from HTCondor and pass it to the node_exporter collector.

Moreover, I will highlight our research on power efficiency in HEP computing, showing the benchmarks

and tools we use to measure and analyze power data. In particular, I will present a new figure-of-merit

designed to characterize power usage during the execution of the HEP-Score benchmark, along with an

updated performance-per-watt comparison extended to the latest x86 and ARM CPUs (Ampere Altra Q80

and M128, NVidia Grace, and recent AMD EPYC chips). Within this context, we introduce a Frequency

Scan methodology to better characterize performance/watt trade-offs.

Outline

➢ Overview of ScotGrid Glasgow, a WLCG Tier2 cluster
- ARC-CE + HTCondor configuration (ARGUS-less auth/)

- dual queue management (ARM & x86) … & GPU

➢ Monitoring tools
- Loki + Prometheus + Grafana set-up

- node_exporter scripts for HTCondor

➢ Benchmarking and Power Measurement
- motivations and methodology

- visualization of HEPscore/Watt and Frequency Scan results

➢ Outlook + questions (& advices about cluster management)

ScotGrid Tier2 Cluster Overview

wn-x86-001

STARTD

CVMFS

HTC-manager

COLLECTOR

NEGOTIATOR

WAN

Scot-Squid

SQUID

Scot-Nat

NAT

storage

(CEPH)

H
T

C
O

N
D

O
R

VPN

AuthN / AuthZ

Traffic

Job requests

wn-ARM-001

STARTD

CVMFS

Arc-ce04

SCHEDD

ARC-CE
Arc-ce03

SCHEDD

ARC-CE
Arc-ce02

SCHEDD

ARC-CE
Arc-ce01

SCHEDD

ARC-CE Tokens, VOMS, ...

VM-Hypervisor

ARC-CE configuration

[common]

hostname = ce0x.gla.scotgrid.ac.uk

[authgroup: bla]

authtokens = xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx https://iam.grid.hep.ph.ic.ac.uk/ * * *

voms = bla.org * * *

[mapping]

map_to_pool = bla /etc/grid-security/pool/bla

[lrms]

lrms = condor condor

[arex]

...

[infosys]

...

[queues]

...

We are using NorduGrid ARC-CE v6.20 (https://www.nordugrid.org/arc/arc6/), soon to update to v7.

The ARC-CE configuration is defined in: /etc/arc.conf

pool-users mapping

VOs AuthN / AuthZ:

Token and/or VOMS

Local Resource

Management System

ARC services

Coordinates & Settings

(incl. APEL accounting)

Queues definition

This used to be done by ARGUS … which was finally decommissioned

https://www.nordugrid.org/arc/arc6/

HTCondor configuration

- daemon_config: load the daemons needed on this node (manager, compute, ce)

- security: security profile and cluster coordinates

e.g. ALLOW_ADMINISTRATOR enables root

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, IDTOKENS

- network: configures network

- mail: configures notifications email

- credentials: DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME = 0 (see Ticket-ID: 146596)

- condor-disable: supports the bespoke condor_enable and condor_disable commands

- wn: makes a single slot on each machine, then Condor can chop it off

- accounting-groups: maps users to groups for internal accounting (accounting-map)

- status: CONDOR_Q_ONLY_MY_JOBS = false

- fairshare: uses the internal accounting to limit VOs resource usage

GROUP SURPLUS resources can be assigned to anyone (even above fair share limits)

After the latest Cluster Update we use HTCondor v10.0 (not-too-) soon to be updated to v23 (/v24?)

The configuration of HTCondor is organised in a number of files in: /etc/condor/*.config

We started using HTCondor in 2015. Both the ARC-CE and HTCondor configuration has been evolving

throughout the years, following updates and WLCG requirements (i.e., usage of Tokens).

Heterogeneous Compute Cluster

HTC-manager

wn_x86

wn_ARM

UKI-SCOTGRID-GLASGOW_CEPH
wn_x86wn_x86wn_x86wn_x86wn_x86

wn_ARMwn_ARMwn_ARMwn_ARMwn_ARMwn_ARM

wn_x86wn_x86wn_x86

ce01.gla.scotgrid.ac.uk

ce02.gla.scotgrid.ac.uk

ce03.gla.scotgrid.ac.uk

ce04.gla.scotgrid.ac.uk

jobs

x86 queue

ARM queue

~15k cores (ht)

~4k cores

ce-test.gla.scotgrid.ac.uk

We started providing ARM resources by creating a separate queue for ARM (former ce-test endpoint).

After upgrading the cluster, we joined both queues within our standard ARC-CE endpoints.

This is a simplified view of our heterogeneous computing cluster:

The condor_requirements setting in the ARC-CE configuration modifies the ClassAd for the jobs that

ARC submits to Condor by inserting an architecture request … (*)

GPU

UKI-SCOTGRID-GLASGOW_ARM

This mechanism also works for GPU queue (tested already!)

Heterogeneous Compute Cluster Config

[queue:condor]

comment = Condor queue

condor_requirements = (Arch == X86_64 && (TARGET.GPUs IS UNDEFINED || TARGET.GPUs == 0))

[queue:condor_arm]

comment = Condor queue (ARM)

condor_requirements = (Arch == aarch64 && (TARGET.GPUs IS UNDEFINED || TARGET.GPUs == 0))

[queue:condor_gpu]

comment = Condor queue (x86 + GPU)

condor_requirements = TARGET.GPUs > 0

(*) … because HTCondor doesn't have a concept of queues: it matches jobs to resources based on their

ClassAd, which includes an architecture entry, which is added by the ARC-CEs.

We are still in a transitioning state, but as more VOs adhere to the dual queue standard, we hope to make

the dual queue submission mechanism more ideal …

Note: the ARC default queue selection appeared buggy in earlier version of ARC v6, hopefully it will improve in v7.

Cluster Monitoring & Logging

wn-x86-001

wn-ARM-001

W
o
rk

e
rN

o
d
e
s

ceph-svr-001

HTC-manager

S
to

ra
g
e

Arc-ce01

Prometheus server
VM:
4cores, 16Gb Ram, 100Gb HD

Grafana server
VM:
1core, 2Gb Ram, 50Gb HD

Loki server
VM:
2cores, 4Gb Ram, 100Gb HD

VM-Hypervisor
node_exporter

node_exporter

PromTail

PromTail

Victoria storage
Metal:
24cores, 16Gb Ram, 50Tb HD

node_exporter

PromTail

V
M

s

Metrics are exported by
node_exporter and
collected by Prometheus
(VM).

Logs are exported by
PromTail and collected
by Loki (VM).

Grafana (VM) pulls data
from both servers and
provides the tools for
querying and building
colorful graphs and
dashboards.

VictoriaMetrics (metal)
archives the collected
data into a large storage
server. Archived data can
be queried by Grafana.

We use node_exporter to extract metrics for Prometheus (and then Grafana).
Beside the standard set of metrics, it can export custom ones.

Two scripts periodically query HTCondor for job information:

ce_get_info.py → runs on the ARC-CEs every 5 min.
node_get_condorinfo.sh → runs on all worker-nodes every 2 min.

The scripts call condor_status -startd with -autoformat:t and parse the output
for node_exporter to ingest (in /var/lib/node_exporter/textfile_collector/):

HTCondor Monitoring

now in python !

condor_node_info.prom <

node_condor_cpu{slot=$SLOTNUMBER,vo=$VO,ce=$CE} ${USECPU}

node_condor_ram{slot=$SLOTNUMBER,vo=$VO,ce=$CE} ${USEMEM}

node_condor_load{slot=$SLOTNUMBER,vo=$VO,ce=$CE} ${LOADAV}

node_condor_runtime{slot=$SLOTNUMBER,vo=$VO,ce=$CE} ${RUNTIME}

...

condor_ce_info.prom <

ce_condor_total_jobs {data["Jobs"]}

ce_condor_queue{{state="done"}} {data["Completed"]}

ce_condor_queue{{state="run"}} {data["Running"]}

ce_condor_queue{{state="idle"}} {data["Idle"]}

ce_condor_queue{{state="hold"}} {data["Held"]}

...

Grafana DashBoard(s)

Cluster Overview HTCondor Monitor Node Monitor

“The power consumption of computing is coming under intense scrutiny

worldwide, driven both by concerns about the carbon footprint, and by

rapidly rising energy costs. […] ” (abstract to ACAT 2022)

In 2021 we started investigating alternative architectures for Grid

computing, starting with ARM chips. Lot has happened since then:

- most LHC experiments ported their software to ARM,

- physics validations,

- set up of a fully heterogeneous cluster (x86 + ARM),

- HEP-Score collaboration and improved methodology,

- dissemination of results, …

Benchmarking and Power Measurement

Methodology:

Power readings are taken via IPMI tools (after some validation against a metered PDU). A script collects and exports

CPU, RAM, Frequency and IPMI Power metrics during the execution of a typical job or benchmark.

As benchmark, we mostly used the HEP-Score & the HEP-Benchmarking Suite:

HEP-Suite: https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite

HEP-Score: https://gitlab.cern.ch/hep-benchmarks/hep-score

The CSV file containing the data series and the HEP-Score results are processed in ROOT (time profiles plots, power

integration, statistical calculations), and cumulative results are visualized … in Excel.

https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
https://gitlab.cern.ch/hep-benchmarks/hep-score

HEPscore/Watt
Using the new Figure of Merit (<75-95%> quantile average) as best proxy for Power, we estimate the

Performance per Watt as HEP-Score/Power FoM …*

*

Nickname Machine CPU HT Frq Gov Freq (GHz) Arch

Xeon 2xIntel20ht 2 * Intel XEON 10-Core CPU E5-2630 v4 HT conservative 2.2 2*x86_64

Milano AMD96ht AMD EPYC 7643 48-Core Processor (HT) HT conservative 2.3 x86_64

2*Roma 2xAMD64ht 2 * AMD EPYC 7452 32-Core Processor HT conservative 2.35 2*x86_64

2*Milano 2xAMD64ht 2 * AMD EPYC 7513 32-Core Processor HT conservative 2.6 2*x86_64

2*Bergamo 2xAMD256ht 2 * AMD EPYC 9754 128-Core Processor HT conservative 3.1 2*x86_64

Siena AMD128ht AMD EPYC 8534P 64-Core Processor (HT) HT conservative 3.1 x86_64

Q80 ARM80c Ampere Altra Q80-30 // conservative 3 aarch64

Max30 ARM128c Ampere Altra Max M128-30 // conservative 3 aarch64

Grace NVidia144c NVidia Grace 144-Core 480GB DDR5 // conservative 3.4 2*aarch64

2*Q80 2xARM80c 2 * Ampere Altra Q80-30 // conservative 3 2*aarch64

Frequency Scan (update)
HEP-Score/Watt vs. CPU Frequency gives a better picture of hardware potentials and shows optimal

performances per watt at mid frequency range.

x86

ARM

Outlook

❖ We plan to keep using HTCondor as Local Resource Management

System and ARC-CE as Job Submission endpoint. Therefore, we will

keep up-to-date on software releases and best practices.

❖ We are progressively expanding our heterogeneous Tier2 cluster

beyond x86 and ARM, with ongoing integration of GPU resources and

possibly RISC-V worker-nodes in the next few years.

❖ We will keep pursuing our research in Sustainable HEP Computing by:

- exploring new hardware (AmpereOne, RISC-V, …),

- improving on the methodology (HEP-Score analysis package),

- developing new benchmarks (GPU+CPU with Celeritas).

end

Dr. Emanuele Simili HTCondor Autumn WorkShop NIKHEF - 27 September 2024

“Data spiraling out of control” by Flux A.I.

HTCondor management scripts

- condor enable/disable: sets StartJobs variable

- condor healthcheck: checks health and if broken disables nodes

https://indico.cern.ch/event/518392/contributions/2182741/attachments/1296424/1933223/Healcheck_2016_hepsysman.pdf

- condor_ls: lists current jobs and status

- condor_qexp: parses condor output to get

- node_get_condorinfo calls condor_status and parses job metrics for node_exporter (see next slides)

We use a number of scripts, developed or collected throughout the years: /usr/local/bin

https://indico.cern.ch/event/518392/contributions/2182741/attachments/1296424/1933223/Healcheck_2016_hepsysman.pdf

Cluster Update

We have completed the update of our Tier2 cluster at Glasgow, due to the long-awaited

End Of Life (in June 2024) of CentOS7, which we used for the past 4-5 years:

- all compute nodes and services updated to Alma 9

- all CEPH nodes updated to Alma 8 and CEPH v14 (Nautilus), next: Pacific

- batch system updated to HTCondor 10.0, ARC-CE v6.20 (waiting for v7), no ARGUS

- updated monitoring services: Prometheus 2.5, Loki 3, Grafana 11, …

- updated management stuff: Ansible v2.14, GitLab v17.3, …

- installed perfSONAR 5.1 testpoint (rather than toolkit)

What Watt

New Figure of Merit (FoM), i.e., the best proxy of power usage for standard

HEP workloads:

FoM should be easy to
implement, we could fit this
peak, but there are other
ways of doing it.

Arrange the data in power
order and perform an upper
quaRtile average, but
removing the top 5% of data

2*AMD64ht

<75-95%> Blue line sits nicely in the plateau

Modal power also sits in the plateau – but

we found edge cases where this breaks

(e.g., Grace has a very steady idle state)

*75-95% quaNtile

average

See also HEPiX presentation on aggregation metrics and k-mean:
https://indico.cern.ch/event/1433496/

https://indico.cern.ch/event/1433496/

2xAMD64ht: Dual Socket AMD EPYC 7513 32-Core Processor (DELL)

CPU: 2 * x86 AMD EPYC 7513 (Milano), 32C/64HT @ 2.6GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MT/s → 4 GB/core
HDD: 3.84TB SSD SATA Read Intensive

in-House (production)

~ 5k cores

2xAMD64ht: Dual Socket AMD EPYC 7452 32-Core Processor (DELL)

CPU: 2 * x86 AMD EPYC 7452 (Roma), 32C/64HT @ 2.35GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MT/s → 4 GB/core
HDD: 3.84TB SSD SATA Read Intensive

2xIntel40ht: Dual Socket Intel XEON 10-Core CPU E5-2630 v4 (HP)

CPU: 2 * x86 Intel(R) Xeon(R) E5-2630 v4, 10C/20HT @ 2.2GHz (TDP 85W)
RAM: 160GB (4 x 32GB + 4 x 8GB) DDR4 2400 MHz → 4 GB/core
HDD: 2TB disk SATA @ 7200 RPM

~ 7.5k cores

~ 1.5k cores

2*ARM80c: Dual Socket Ampere Altra Q80-30 80-Core Processor (Ampere)

CPU: 2 * ARM Ampere Q80-30, 80C @ 3GHz (TDP 210W)
RAM: 512GB (32 x 16GB or 16 x 32GB) DDR4 3200MT/s → 3.2 GB/core
HDD: 2 * 1TB NVMe

~ 2k cores

ARM128c: Single Socket Ampere Altra Max M128-30 128-Core Processor (SuperMicro)

CPU: ARM Ampere M128-30, 128C @ 3GHz (TDP 250W)
RAM: 512GB (8 x 64 GB) DDR4 3200MHz → 4 GB/core
HDD: 8TB NVMe

~ 2k cores

AMD96ht: Single AMD EPYC 7003 48-Core Processor (GIGABYTE)

CPU: x86 AMD EPYC 7643, 48C/96HT @ 2.3GHz (TDP 225W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz → 2.7 GB/core
HDD: 3.84TB SSD SATA

Grace144c: Dual Socket* NVidia Grace 144-Core Processor (SuperMicro)

CPU: NVidia Grace 144-Core 480GB DDR5 @ 3.4GHz (TDP 500W)
RAM: 480GB (on chip) DDR5 4237MHz → 3.3 GB/core
HDD: 1TB NVMe + 4TB NVMe

ARM80c: Single socket Ampere Altra Q80-30 80-Core Processor (GIGABYTE)

CPU: ARM Ampere Q80-30, 80C @ 3GHz (TDP 210W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz → 3.2 GB/core
HDD: 3.84TB SSD SATA

in-House Testing

Remote Testing
2*AMD256ht: Dual Socket AMD EPYC 9754 128-Core Processor (SuperMicro)

CPU: 2 * x86 AMD EPYC 9754 (Bergamo), 128C/256HT @ 3.1GHz (TDP 360W)
RAM: 1.536TB (24 x 64GB) DDR4 3200MHz → 3 GB/core
HDD: 512GB NVMe + 3.84TB SSD
OS: Rocky 9.2

ARM128c: Single Socket Ampere Altra Max M128-28 128-Core Processor (XMA)

CPU: ARM Ampere M128-28, 128C @ 2.8GHz (TDP 250W)
RAM: 512GB (8 x 64GB) DDR4 3200MHz → 4 GB/core
HDD: 1TB NVMe Storage
OS: Rocky 8.8

XMA

AMD128ht: Single Socket AMD EPYC 8534P 64-Core Processor (SuperMicro)

CPU: AMD EPYC 8534P (Siena), 64C/128HT @ 3.1GHz (TDP 200W)
RAM: 576GB (6 x 96GB) DDR5 3200MT/s → 4.5 GB/core
HDD: 1TB NVMe Storage
OS: Rocky 8.8

Coming soon : AmpereOne (96 - 192 cores)

… we expect to get remote access to a test box next month!

SuperMicro

SuperMicro

SuperMicroSuperMicro

ARM + x86 Farm @ Glasgow

(old) Job submission chain @ ScotGrid Glasgow:

Condor10

~17000~ 4000

ARM Physics Validation
Most LHC experiments (ATLAS, CMS, ALICE) have done a first round of extensive

Physics Validation campaigns against our ARM cluster @ Glasgow:

• ATLAS: Full simulation and Reconstruction are physics validated.

ATLAS is ready for pledged ARM resources!

• CMS: Physics validation on ARM mostly successful, but not conclusive.

CMS is not in a position to use ARM processors in production!

• ALICE: Extensive test of MC simulation jobs, no analysis workflows.

Recommends ARM segregation or mixed queue with enable/disable!

• LHCb: Groundwork & test samples done, full physics validation not done.

Production use of ARM unlikely before end of 2024!

Latest reports from GDB (June 2024 @ CERN): https://indico.cern.ch/event/1356135/

It’s time for VOs to start sending ARM jobs our way … we have over 4k ARM cores !

☺







https://indico.cern.ch/event/1356135/

RISC-V testing

Progress:

- We managed to compile and install HEP, software and Grid middleware by building from source:
ROOT: https://github.com/hahnjo/root.git (RISC-V ported version)

CVMFS: https://github.com/cvmfs/cvmfs.git (original Git)

XRootD: https://github.com/xrootd/xrootd (original Git)

Geant4: https://gitlab.cern.ch/geant4/geant4 (original Git)

- People in CMS made some progress in porting the CMSSW framework to RISC-V:

most code can be ported, major issues are PyTorch & TensorFlow compatibility

- Accepted talk at CHEP2024: https://indico.cern.ch/event/1338689/ .

We have acquired a RISC-V desktop PC and started experimenting with it:

Main motivations:

- Open-source and royalty-free architecture,

- Extremely low power usage (140 Watts @ full load - 64 cores),

- Growing ecosystem and potential for fast innovation (e.g., EPI will build on RISC-V).

https://github.com/hahnjo/root.git
https://github.com/cvmfs/cvmfs.git
https://github.com/xrootd/xrootd
https://gitlab.cern.ch/geant4/geant4
https://indico.cern.ch/event/1338689/

RISC Results (preliminary)
We could run ROOT tests, ROOT benchmarks, and DB12 on RISC and few other architectures.

Results are a bit tricky to compare, because not all machines can run all benchmarks …

So far, DB12 is the

only benchmark

that could run on all

hardware !

single whole single_core whole_node

machine CPU nproc db12_single db12_wholenode /i5-7500 /AMD_noHT /i5-7500 /AMD_noHT

AMD_noHT AMD EPYC 7643 48-Core Processor 48 23.85752688 938.0106703 100% 100% 1003% 100%

AMD_HT // 96 24.96483826 939.6929573 105% 105% 1005% 100%

ARM Ampere Altra Q80-30 Processor 80 24.90039841 2010.311923 105% 104% 2151% 214%

GPU_noHT 2 * AMD EPYC 7443 24-Core Processor 48 48.07692308 2115.670718 202% 202% 2263% 226%

GPU_HT // 96 48.16955684 2323.572578 203% 202% 2486% 248%

D20_noHT 2 * AMD EPYC 7452 32-Core Processor 64 17.91120081 1111.082808 75% 75% 1189% 118%

D20_HT // 128 18.03861789 970.5602849 76% 76% 1038% 103%

D22_noHT 2 * AMD EPYC 7513 32-Core Processor 64 24.31506849 1401.588433 102% 102% 1499% 149%

D22_HT // 128 24.28180575 1396.361662 102% 102% 1494% 149%

Grace 2 * NVidia Grace 72-Core 144 40.98360656 5903.329871 173% 172% 6315% 629%

PPEPC13 Intel Core i5-7500 CPU @ 3.40GHz 4 23.75690608 93.47930739 100% 100% 100% 10%

MILK-V Milk-V riscv64 64 6.311537491 375.5319286 27% 26% 402% 40%

