

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

Jacqueline Keintzel and Guy Wilkinson On behalf of The FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch BE Seminar CERN, Geneva, Switzerland 12 April 2024

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

CERN Accelerator Complex

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

- Large Hadron Collider (LHC)
 - Biggest collider in the world
 - Presently in Run 3
 - 6.8 TeV beam energy achieved
 - 2 x 10³⁴ cm⁻²s⁻¹ luminosity
- High Luminosity LHC (HL-LHC)
 - Aims at 7 TeV per beam
 - Up to $5 7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - Collisions until ~ 2040

And then?

Particle Physics Future

- In 2020 the **European** strategy upgrade of particle physics (ESPP) expressed the long-term plan for particle colliders:
 - An electron-positron Higgs factory is the highest-priority next collider.
 - Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a center-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.
- Particle Physics Project Prioritization Panel (P5) published recommendations in 2023, high priority projects:
 - Exploitation of LHC and HL-LHC
 - Off-shore Higgs and electroweak factory

JACQUELINE KEINTZEL

Future Circular Collider

FCC Collaboration

Long-Term Goal: World-leading high energy physics infrastructure for 21^{st} century to push particle-physics precision and energy frontiers far beyond present limits \rightarrow international collaboration essential

Feasibility Study and Schedule

- **Goal:** Demonstration of the geological, technical, environmental, financial and administrative feasibility of the FCC-ee, including its optimisation
- Project preparatory phase with adequate resources immediately after Feasibility Study

Mid-Term Report

• MTR Goal: Asses progress of feasibility study towards the final report; published February 2024

BE SEMINAR 12 APR 2024

FCC Physics Potential

• Integrated FCC offers multi-stage facility with broad and diverse physics potential

	√s	L /IP (cm ⁻² s ⁻¹)	Int L/IP/y (ab-1)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	182 x 10 ³⁴ 19.4 7.3 1.33	22 2.3 0.9 0.16	2-4 experiments Total ~ 15 years of operation
рр FCC-hh	100 TeV	5-30 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	$\sqrt{s_{eN}}$ = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

- FCC-ee:
 - Highest luminosities at Z, W and H of all proposed Higgs and electro-weak factories
 - Indirect discovery potential up to 70 TeV
- FCC-hh:
 - Direct exploration of next energy frontier (~10x LHC)
 - Also heavy ion collision experiments possible
- FCC-eh:
 - Possibly also electron-proton (ion) collisions

Why FCC?

Physics

- Immense physics potential for lepton and hadron colliders
- Luminosity frontier: Precision physics experimements
- Energy frontier: Discovery potential thanks to 100 TeV $\rm E_{\rm cm}$ for FCC-hh

Timeline

- FCC-ee technology is mature; collisions could start few years after HL-LHC
- Integrated FCC project allows for ~20 more years magnet R&D
- Optimized overall investment

- 4 collision points for high-energy physics experiments
- Many other possibilities (fixedtarget, use of beam dump, ..)
- Only facility to commensurate the size of the CERN community

Optimized Placement

- Optimized considering constraints on geology and surface
- 90.7 km circumference with 8 surface points
- High Energy Booster in addition to main rings

FCC-ee Overview

Particle Physics:

- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair-threshold
 - 120 GeV: ZH-production
 - 182.5 GeV: top-pair-threshold
- Huge statistics

Accelerator Physics:

- 4-fold super-symmetric layout
 - Up to 4 Interaction Points (IPs)
 - 1 RF-section per beam
 - 1 collimation section
 - 1 section for injection and dump
- Nanometer beam size at IPs
- Strong synchrotron radiation

Precision particle physics experiments Center-of-mass energy determination

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

FCC-ee Run Plan

- In principle 4 different energy stages
 - Z-pole
 - W-pair-production
 - ZH-production

BE SEMINAR

12 APR 2024

• top-pair threshhold

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
$Lumi/year (ab^{-1})$	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	—	3	1	4
Number of events	$6 \times 10^{12} {\rm ~Z}$		$2.4 \times 10^8 \mathrm{WW}$		$1.45 \times 10^{6} \text{ ZH}$ + $45 \text{k WW} \rightarrow \text{H}$	$\begin{array}{c} 1.9\times10^{6}\mathrm{t}\bar{\mathrm{t}}\\ +330\mathrm{k}\mathrm{ZH}\\ +80\mathrm{k}\mathrm{WW}\rightarrow\mathrm{H} \end{array}$	

Number of events are for the current baseline with 4 Interaction Points

Center-of-mass Energy Uncertainty

Error between measured and true E_{cm}

- Large effect on mass measurement
- Stems from systematic errors

Fluctuation between measurements

- Large effect on resonance width measurements
- Stems from variability of measurement conditions

Courtesy: A. Blondel

Expected Precision

Quantity	statistics	$\Delta E_{\rm CMabs}$	$\Delta E_{\rm CMSyst-ptp}$	calib. stats.	σE_{CM}	
		100 keV	40 keV	$200 \text{ keV}/\sqrt{(N^i)}$	$(84) \pm 0.05$ MeV	
m _Z (keV)	4	100	28	1	—	
$\Gamma_{\rm Z}$ (keV)	4	2.5	22	1	10	
$sin^2 \theta_W^{\text{eff}} \times 10^6 \text{ from } A_{FB}^{\mu\mu}$	2	_	2.4	0.1	_	
$\frac{\Delta \alpha_{QED}(M_Z)}{\alpha_{QED}(M_Z)} \times 10^5$	3	0.1	0.9	_	0.05	

Large expected luminosity \rightarrow huge statistics \rightarrow small statistical error of a few keV for Z and W-boson

Aim to achieve same order of magnitude for systematic errors → Scope of the **EPOL working group**

EPOL: Energy calibration, polarization and monochromatization

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

Part I: Introduction to beam optics

BE SEMINAR 12 APR 2024

Linear Beam Optics in a Nutshell

Optical lenses focus and defocus light

W. Demtröder, Experimentalphysik 2

Linear Beam Optics in a Nutshell

EPOL FOR THE FCC-EE

19

COLLIDER

Tune

RF-Voltage

- Transverse focusing and defocusing leads to betatron oscillations
- Tune Q_x , Q_y : Number of betatron oscillations per turn
- Longitudinal focusing with RF-cavities leads to synchrotron oscillations
- Synchrotron tune Q_s: Number of synchrotron oscillations per turn

 $\int_{t_1} \int_{t_2} \int_{t_3} \int_{t_3} f_{t_3} = t$

Off-momentum (chromatic) particles (blue and green) oscillate around the nominal energy (red)

Reports on Progress in Physics, 68 Vol. 9, p. 1997-2265

Chromatic Effects

Off-momentum particles have different beam optics

Dispersion

- Generates a shift of transverse position for off-momentum particles
- Stems from dipoles and quadrupoles

Classical optics: path length depends on wavelength

Chromaticity

- Generates a betatron tune shift for off-momentum particles
- Change in focusing for different momenta

Classical optics: focal length depends on wavelength

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

Part II: Polarization

BE SEMINAR 12 APR 2024

Polarization Build-Up

Ν More likely (by factor ~ 25) e Ν Less likely

- Statistically every 10^{10th} emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is **anti-parallel** to the guiding magnetic field for e⁻
- In a flat synchrotron only vertical bending \rightarrow vertical spin orientation
- Known as Sokolov-Ternov-Effekt
- Maximum theoretical polarization of 92.4 %
- In real accelerator max. polarization depends on various factors

Spin Tune

- Spin precesses through the lattice
- Spin tune v: Number of spin precessions per turn
- In an error-free flat machine without solenoids:
- 45.6 GeV e⁺/e⁻ → 103.5 spin tune
- Purely vertical spin orientation

a ... gyro-magnetic anomaly y_{Rel} ... Lorentz-factor

$$v = a * \gamma_{Rel}$$

Principle: Spin tune measurement Beam energy determination

Courtesy: V. Caudan

Contributions to the Beam Energy

~4 keV at 45.6 GeV beam energy measurement –> ambitious goal of ~ 10⁻⁷ statistical and systematic errors

Selected impacts on the beam energy

- Synchrotron radiation losses
- Earth Tides, energy followed by RF-cavities
- Chromaticity uncertainty ~ 10^{-6} : $\Delta E/E \sim 10^{-8}$
- Energy dependent path length: $\Delta E/E \sim 10^{-7}$
- Betatron oscillations: $\Delta E/E \sim 10^{-7}$
- Orbit corrections: $\Delta E/E \sim 10^{-7}$

Beam energy change due to Earth tides at LEP

Courtesy: J. Wenninger

BE SEMINAR

12 APR 2024

• ...

Resonances

BE SEMINAR 12 APR 2024

Tuning and Polarization

Polarization possibly improved by harmonic spin matching

• Shift of spin tune with misalignments to be evaluated

• Misalingment errors applied in the arcs and corrected

Courtesy: Y. Wu

- Maximum polarization calculated
- Spread of max polarization significantly increased

Wigglers

- At 45.6 GeV energy: Polarization time of 248 h
- Solution: wiggler magnets
 - Reduce polarization time to 12 h
 - Increase energy spread by factor ~ 3.5

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Use on wigglers until ~5-10 % vertical polarization reached

BE SEMINAR 12 APR 2024

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use on wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use on wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off
- Inject ~10000 colliding bunches (~2 x 10¹¹ ppb)

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use on wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off
- Inject ~10000 colliding bunches (~2 x 10¹¹ ppb)
- Measure beam energy with pilots while collisions take place

CEPC Polarization Scheme

- Injection of polarized electrons and positrons in collider rings at Z and W
 - Longitudinal polarization for physics bunches
 - Transverse polarization for pilot bunches
 - More time for physics

Possibly also polarized beams at H

Courtesy: Z. Duan

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

Part III: Depolarization and energy measurement

Resonant Depolarization

Natural width $\sim 200 \text{ keV}$ at Z

Suggestion: Alternating scanning directions

Simulations achieved better than 10 keV

- Independent depolarizers per beam
- TEM wave propagating towards a pilot bunch
- Varying exciting frequency

Exciting frequency = spin tune = depolarization

Simulations for W-pair-threshold

Beam Tests at KARA

Excitation frequency \leftrightarrow Beam energy

- Losses depend on polarization
- Findings consistent with FCC simulations
- Suggests negative engergy drift

Courtesy: S. Nikitin, I. Koop

Experience from LEP

- Resonant depolarization also used at LEP
- Strong depolarizers have lead to polarization flips
- Possibly re-use of the same pilot bunches

E [MeV]

- At LEP resonant depolarization not feasible for W
- Several shorter depolarization steps at discrete frequencies

 ν

Polarimeter

- ~ 520 nm circular **polarized laser** interacts with beam
- Back-scattered photons sufficient for resonance measurement
- Additional measurement of scattered electrons for 3D spin vector
- At least 1 polarimeter per beam

Spin tune Beam energy measurement

Scattered electrons to be measured by Si pixel detector

Courtesy: N. Muchnoi

Colliding Bunches Polarization

Consider forward-backward asymmetry of $b\overline{b}$ at Z pole: $A_{FB}^b = \frac{3}{4}\mathcal{A}_e\mathcal{A}_b$

where in the SM $A_e \approx 0.15$, $A_b \approx 0.95 \Longrightarrow A_{FB}^b \approx 0.11$

Now, if there is longitudinal polarisation, asymmetry becomes: $(A_{FB}^b)' = \frac{3}{4} \mathcal{A}_e' \mathcal{A}_b$

where
$$\mathcal{A}'_{e} = -\left(\frac{\mathcal{A}_{e} - P}{1 - \mathcal{A}_{e}P}\right)$$
 with $P = \frac{(P_{z})_{e^{-}} - (P_{z})_{e^{+}}}{1 - (P_{z})_{e^{-}}(P_{z})_{e^{+}}}$

and $(P_z)_{e^{\pm}}$ the longitudinal polarisation of the e^{\pm} .

So, if $(P_z)_{e^-} = (P_z)_{e^+}$ (no reason to be so) = 10⁻⁵ (ballpark guess)

$$P = 2 \times 10^{-5} \implies \frac{(A_{FB}^b)^{/} - A_{FB}^b}{A_{FB}^b} = 1.3 \times 10^{-4}$$

Take away message:

- Longitudinal polarization could spoil measurements and must be < 10-5
- To be measured also with polarimeters
- Depolarizers must also act on colliding bunches

G. Wilkinson: Requirements for polarization measurements

From Beam Energy to E_{CM}

- 40 MeV synchrotron radiation losses per turn
- Additional beamstrahlung (BS) (synchrotron radiation due to field of colliding bunch) \lessapprox 0.62 MeV/beam/IP
- Same RF-section for both beams to compensate losses
- $\Delta E_{_{CM}} \sim$ -8 keV (PA, PD) and ~0.7 keV (PG, PJ)
- Boosts ~ +/- 10 MeV (PA, PD) and ~ +/- 30 MeV (PG, PJ)
- Pilot and colliding bunches have different local energy
- Accurate models essential

Dispersion and Collision Offset

- D... Dispersion
- σ_{μ} ... transverse beam size
- $u_0 \dots$ collision offset

for $\Delta D^* = 1 \ \mu m$, $\sigma_E / E = 0.13\%$

For $\Delta D^* = 10 \ \mu m$, the CM error is ~1 MeV/nm, i.e., the uncertainty on / average separation must be below $u_0 < 0.1 \ nm$ to limit the systematic errors < 100 keV.

- Only relevant for colliding bunches
- Measurement and control of dispersion at collision point essential
 - $\Delta D < 1 \mu m$ relaxes requirements on collision offsets
- Collision offsets determined with e.g. luminosity scans
 - Presently collision offsets must be demonstrated to be controlled to $\sim 0.1\sigma_v$

J. Wenninger: Beam-beam and OSVD

Experiments

- G. Wilkinson: Di-muon events "The gift that keeps on giving"
- Reliable and frequent logging of parameters essential
- Possibility to measure Z-bosons from higher E_{cm} events

Important message

All these results come from 'proof-of-principle' studies. They need to be repeated and consolidated with stateof-the-art ISR generators, proper simulation, realistic treatment of detector resolutions *etc.*, and extended to other fermion types and (in top regime) WW events. Many important & interesting studies to be performed !

One million di-muon events per 8h shift ~ 5 keV statistical precession achievable

10⁶ dimuon events at Z-pole: $e+e- \rightarrow \mu+\mu-(\gamma)$ (y)... Initial-State-Photon (ISR)

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

Monochromatization

- 62.5 GeV beam energy corresponds to the peak of Higgs-production with narrow width of 4.2 MeV
- For minimization of collision energy spread -> monochromatization techniques required

$e^{-\underbrace{E_{0} + \Delta E}}_{E_{0} - \Delta E} \underbrace{E_{0} + \Delta E}_{E_{0} - \Delta E} e^{+} \begin{array}{c} \text{Same sign dispersion at the IP leads to increase of E_{CM} spread} \\ e^{-\underbrace{E_{0} + \Delta E}}_{E_{0} - \Delta E} \underbrace{E_{0} - \Delta E}_{E_{0} - \Delta E} e^{+} \begin{array}{c} \text{Opposite sign dispersion} \\ \text{helps reducing E}_{CM} \text{ spread} \end{array}$

Introducing dispersion

Courtesy: A. Faus-Golfe, H. Jiang and P. Raimondi

Introducing chromaticity

Non-zero local vertical chromaticity to reduce collision energy spread presently explored

Center-of-mass Energy Calibration, Polarization and Monochromatization of the Future electron-positron Circular Collider

We made it through the title!

BE SEMINAR 12 APR 2024

Summary

• Higgs and electroweak factory highest priority next collider after completion of HL-LHC

• High precision particle physics experiments require excellent determination of E_{cm} and collision boosts

Regular EPOL meetings: indico.cern.ch/category/8678/ Typically every third Thursday 16:30-18:30

Any help is welcome!

Mailing list: fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from: https://e-groups.cern.ch/e-groups/EgroupsSearch.do

Summary

• Higgs and electroweak factory highest priority next collider after completion of HL-LHC

• High precision particle physics experiments require excellent determination of E_{cm} and collision boosts

Regular EPOL meetings: indico.cern.ch/category/8678/ Typically every third Thursday 16:30-18:30

Any help is welcome!

Mailing list: fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from: https://e-groups.cern.ch/e-groups/EgroupsSearch.do

- First half of FCC Feasibility Study successfully completed with the mid-term review
 - Placement and layout defined, entire project adapted to new geometry
 - Dialogue with local-regional actors and stakeholders for implementation established and ongoing
 - All deliverables met, list of recommendations from committees towards final Feasibility Study

Outlook

- Completion of FCC Feasibility Study by March 2025 and set-up structure for preparatory phase
 - Complete technical work for FCC FS by end 2024 including implementation of recommendations
 - Further development of affordable funding model and related governance implications (with Council)
- By 2027-2028: Project approval and start of civil engineering design contracts
 - Requires overall integration study, refined input for environmental evaluation and project authorisation
 - Specifications to enable tender design to start from 2028 (underground) and 2029 (surface)
- By 2031-2032: Start of civil engineering construction
 - TDR to enable prototyping, industrialization towards component production

FCC-Week 2024

Future Circular Collider (FCC) Week 2024 at the Westin St. Francis in San Francisco from Monday 10 June to Friday 14 June 2024

> Registration is open: https://fccweek2024.web.cern.ch/

We look forward to welcoming you in San Francisco for what promises to be an exciting and informative event!

Thank you!

Jacqueline Keintzel and Guy Wilkinson On behalf of The FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch BE Seminar CERN, Geneva, Switzerland 12 April 2024

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.