
1 Libraries

When version 1.0 of Form was designed in general the quality of libraries was very poor. The result was that

in the first versions of Form only the most fundamental library functions were used. All others were made as

part of the Form sources, which was a nice feature during the period that Form was commercial. In version

3 this strategy was abandoned for some simple reasons:

• The quality of the libraries had improved enormously.

• More standard features were needed when Form became more powerful.

• Some libraries are much work to make oneself. Hence this takes much time that can be used better.

• If it is a rather popular library, someone else will maintain it.

• The algorithms may be better than the ones that can be easily implemented.

• There are probably a few more.



In this session we will be looking at what libraries have been included and how they were included. This should

show how one can add more functionality with external libraries.

Which are these libraries? In order of introduction:

• GMP

• gzip

• pthread

• Kaneko’s diagram generator

• MPFR

Four of these libraries are provided with any decent distribution of a C or C++ compiler. The diagram generator

has been provided by Toshikaki Kaneko. It was originally used in the Grace system for the automated calculation

of reactions, but he has reprogrammed it in C++.



There are also some ‘semi-libraries’: code that is used as if it is a library, but has been programmed specifically

for Form. Examples are the code for optimizations, the rational polynomial routines and the code for floating

point arithmetic. We will treat the floating point routines last.

The GMP and gzip libraries involve only internal coding. They do not have external commands, with exception

of specifying the compression level for gzip. Hence we will treat them first. The later libraries involve external

features and hence required many more steps during implementation. It is hoped, that after this users can

implement more libraries when they need them for their work. Alternatively one might implement more features

of these libraries.



1.1 GMP

To understand the first use of the GMP (GNU Multi-Precision) library, one has to understand some of the internal

workings of arithmetic operations in Form and its inherent limitations. It has been known for a long time that

the best algorithms for multi-precision calculations depend on the desired precision. For more information about

this one should consult volume 2 of ”the art of computer programming” by D. Knuth. Originally Form was

prepared for relatively ‘small’ numbers in the coefficients and hence the simple classical algorithms were used.

But during the 1990’s the computations of moments of splitting and coefficient functions in DIS made the dealing

with much larger numbers necessary. At around the same time the GMP library started to become a standard.

Let us have a look how the native arithmetic works in Form. Each number is an array of unsigned words, in

which a word is half the size of the natural word size in the given compiler/computer. This means that originally

a Form word was 16 bits (for a 32 bits processor) and nowadays, with 64-bit hardware, this size is 32 bits.

Why? We want to be able to multiply and divide without needing extensions to the compiler like ‘long long’

that were originally not standard.

In the current mode we can pack a word into a long and then multiply two longs, after which we can take

the resulting long apart easily. Similarly we can set up divisions. In this way we can construct multiplications

and divisions of as big a numbers as we like. The arrays are built up with the least significant word in the

zero element. We use the classical algorithms for the basic operations. Normally this works quite well. The

operation that is most bothersome is the GCD operation. In principle there exist two variations of the Euclidean

algorithm. One is the classical one, and one is the binary algorithm. This algorithm works as follows:



10011100 100111 1100 11 11 11 0 156

11011000 11011 11011 11011 11000 11 216

100 11 -> 1100 12

Step 1: Take out the trailing zeroes. The minimum number of them determines the powers of 2 in the GCD.

Step 2: subtract the two numbers. Take out trailing zeroes in the difference. If the answer is zero, we have the

GCD after multiplying with the powers of two in step 1. Step 3: Keep the two smallest numbers. Step 4: Go

back to step 2.

It looks very elegant, but once the shifting of the bits through an array of words is taken into account, it depends

on the low level instruction set of the computer whether it is faster or slower than the regular algorithm, and

even when it is faster, it is not faster by very much.

The best algorithm seems to find its origin in the consideration of the generalised Euclidean algorithm. This

algorithm works as follows:



In the generalized Euclidean algoritm we use the property that if g is the GCD of x and y, there exists a pair of

integers a and b such that

ax + by = g

Assume that y is the smaller number. The normal way would now be to compute

z = x%y

and then replace x by y, and y by z, after which we continue until z is zero, making the y of that moment

the GCD. The problem is that the division is a very expensive operation for large numbers. During the whole

procedure one can keep track of the ever more accurate values of a and b. In the end one obtains their values

as well. This can be very useful when computing for instance 1/x when calculus is modulus a prime number.

The trick is now to take in each step only the leading one or two words of each number. This may mean that z

is not entirely correct, but that makes no difference in the determination of the new numbers, as they still have

the same GCD:

x′ ← max(x− zy, y)

y′ ← min(x− zy, y)

Because we use half the natural wordsize of the computer, all divisions are done with natural words. This is called

the Lehmer-Euclidean algorithm. It sped up the calculations of complicated moments of structure functions by

a factor 7 when implemented in Form in 2006. 1

1D.H.Lehmer: ”Euclid’s algorithm for large numbers”. American Mathematical Monthly, 45:227-233, 1938.



There are two disadvantages to the above setup of having Form do everything ‘by itself’. The first is that

for very large numbers there are better algorithms. These would typically be numbers that take more than a

few hundred words. The second is that some operations are better done in assembler language. It is one of

the policies wrt Form to only use higher language in coding and to avoid machine dependencies. If one uses

assembler language, one can work with whole computer words, because after a multiplication the leading part,

that would be lost in a higher language, can be found in another register, and similarly one can do divisions.

This cuts the time of many operations by a factor 2-4. Both these problems are taken into account in a library

like the GMP library. Hence, at a given moment during working with version 2 of Form it was decided to use

the GMP library when the precision of the numbers becomes more than a few Form words. The reason of this

turnover point is that to use the GMP library, a conversion is needed, because GMP uses a different notation.

It is not clear whether the choice of turnover point is optimal. It may be noted that currently a good C library

offers facilities that address the problem of assembler language having an advantage wrt. those registers.

All code for this implementation of the GMP library is contained in the file reken.c and form3.h. It is controled

with the macro WITHGMP. If this macro is not defined Form uses its own algorithms/code. This is of course

historical, because there was a period that on some computers the GMP library might not be available.



Example (from the routine that multiplies lengthy numbers):

#ifdef WITHGMP

if (na > 3 && nb > 3) {

/* mp_limb_t res; */

UWORD *to, *from;

int j;

GETIDENTITY

UWORD *DLscrat9 = NumberMalloc("MulLong"),

*DLscratA = NumberMalloc("MulLong"),

*DLscratB = NumberMalloc("MulLong");

#if ( GMPSPREAD != 1 )

if ( na & 1 ) {

from = a; a = to = DLscrat9; j = na; NCOPY(to, from, j);

a[na++] = 0;

++*nc;

} else

#endif

if ( (LONG)a & (sizeof(mp_limb_t)-1) ) {

from = a; a = to = DLscrat9; j = na; NCOPY(to, from, j);

}



#if ( GMPSPREAD != 1 )

if ( nb & 1 ) {

from = b; b = to = DLscratA; j = nb; NCOPY(to, from, j);

b[nb++] = 0;

++*nc;

} else

#endif

if ( (LONG)b & (sizeof(mp_limb_t)-1) ) {

from = b; b = to = DLscratA; j = nb; NCOPY(to, from, j);

}

if ( ( *nc > (WORD)i ) || ( (LONG)c & (LONG)(sizeof(mp_limb_t)-1) )

) {

ic = DLscratB;

}

if ( na < nb ) {

/* res = */

mpn_mul((mp_ptr)ic, (mp_srcptr)b, nb/GMPSPREAD,

(mp_srcptr)a, na/GMPSPREAD);

} else {



/* res = */

mpn_mul((mp_ptr)ic, (mp_srcptr)a, na/GMPSPREAD,

(mp_srcptr)b, nb/GMPSPREAD);

}

while ( ic[i-1] == 0 ) i--;

*nc = i;

/*

if ( res == 0 ) *nc -= GMPSPREAD;

else if ( res <= WORDMASK ) --*nc;

*/

if ( ic != c ) {

j = *nc; NCOPY(c, ic, j);

}

if ( sgn < 0 ) *nc = -(*nc);

NumberFree(DLscrat9,"MulLong"); NumberFree(DLscratA,"MulLong");

NumberFree(DLscratB,"MulLong");

return(0);

}

#endif

Here GMPSPREAD is the number of Form words that fit inside a GMP word.



We will see more use of the GMP library in the part about floating point numbers and their arithmetic.



1.2 gzip

Another problem in the calculations of Mellin moments of structure functions was the size of the expressions.

This was mostly the case during sorting, when the size of the sort file can be several times the size of the input

or output. Of course Form uses already some compression in its expressions, but by studying these sort files

it became clear that gzip could compress them further by typically a factor 4 to 5. This was considerable in

the days that disks had rather limited sizes. In addition, with old style disks, the reading operation is relatively

slow, because for a random read there may be a waiting time of about 8 msec. With the SSD disks this delay

has mostly vanished. Of course gzip is not a very simple program, and it may well be that in the future it could

obtain even better algorithms. This led to the decision to use the gzip library, rather than trying to program its

algorithms natively into Form.

There are several problems connected to the implementation of the gzip compression inside Form. gzip is meant

to compress complete files, and does not allow access to random points inside the compressed file. This means

that it cannot be applied to the scratch files, because when we want to access the contents of a bracket, we may

have a bracket index to speed this up and that would imply reading terms from the given location. This leaves

the sort files, from which the patches are read sequentially only, and potentially the saved files, provided they

are unpacked when copied to the .str file. This last feature has not been implemented as of yet, but should not

be very difficult. It would need modifications only in the file store.c and maybe some extra variable in one of

the data structs.

Of course one could use gzip on the .sav files externally, but that means that one would have to unzip the whole



file before using it, even if one needs only a single expression from it.



The biggest benefit is to be found in the sort file. Here we should be aware that each patch in each sort file

(when using TForm) should be an independent stream. Hence if we are merging 32 patches from each of the

sort files in a TForm program with 16 workers, we have 512 gunzippings going on at the same time. Each of

these needs buffers. Fortunately the gzip library has been set up properly for this and we only have to worry

about the bookkeeping in the Form side. The file compress.c has the interface with the gzip library, and in

sort.c we have to decide whether to call the proper routines. There is a macro GZIPDEBUG that can activate

code to aid in the debugging by printing information about the value of critical variables.

It should be noted, that there exists a better compression that does preserve the possibility to enter into an

expression at intermediate points. This one works at the byte level and utilises the fact that there are very many

zero bytes inside the Form expressions. And also this compression can still be combined, both with the original

Form compression at the term level, and the gzip compression afterwards. It will be quite some work though

to implement it. It would however compete with the most economical ways to store multivariate polynomials,

while at the same time be applicable for all internal objects. It also would allow the use of a bracketindex (of

course without the gzip step). I never had the time to implement it though.



1.3 pthread

When parallelisation became more of an issue, at first the group in Karlsruhe decided to make a version of

Form which could run operations in parallel. This became ParForm. It would run on the special computers

that the group had, and sped up calculations enormously. The main issue with ParForm was the amount of

data that had to be transferred between the various computers. This needed relatively expensive hardware. At a

later point the computer industry came up with chips with multiple processors and shared memory. This solves

the worst part of the data transfer, because now one may only have to pass a pointer, but it required a different

model for the parallelisation, based on threads. For this TForm was constructed. This uses the multiple thread

conventions of POSIX threats, and because I had picked up a limited experience with parallelisation in the early

90’s at Fermilab, Form was more or less ready for this, even though the sources did have to be cleaned up a

lot. Such cleanups always run the risk of introducing errors, and hence it is not excluded that some still exist,

after all these years.



The first cleanup meant that the global variables had to be strictly divided over a number of substructs, in such

a way that local variables for each threat would be in one set of substructs, while all other substructs would be

in another set. Once this was done, for sequential Form all substructs could be part of the main global struct

A, while for TForm, the private substructs could be in a separate struct for each of the threats while the others

would remain inside A. The next step, which is essential here, was to create a few macro’s in such a way that

both for Form and for TForm the sources remain identical. These have been explained before. The interface

to the POSIX library is inside the file threads.c:

## Variables :

## Identity :

## StartHandleLock :

## StartAllThreads :

## InitializeOneThread :

## FinalizeOneThread :

## ClearAllThreads :

## TerminateAllThreads :

## MakeThreadBuckets :

## GetTimerInfo :

## WriteTimerInfo :

## GetWorkerTimes :

## UpdateOneThread :



## LoadOneThread :

## BalanceRunThread :

## SetWorkerFiles :

## RunThread :

## RunSortBot :

## IAmAvailable :

## GetAvailableThread :

## ConditionalGetAvailableThread :

## GetThread :

## ThreadWait :

## SortBotWait :

## ThreadClaimedBlock :

## MasterWait :

## MasterWaitThread :

## MasterWaitAll :

## MasterWaitAllSortBots :

## MasterWaitAllBlocks :

## WakeupThread :

## WakeupMasterFromThread :

## SendOneBucket :

## InParallelProcessor :



## ThreadsProcessor :

## LoadReadjusted :

## SortStrategy :

## PutToMaster :

## SortBotOut :

## MasterMerge :

## SortBotMasterMerge :

## SortBotMerge :

## IniSortBlocks :

## DefineSortBotTree :

## GetTerm2 :

## TreatIndexEntry :

## SetHideFiles :

## IniFbufs :

## SetMods :

## UnSetMods :

## find_Horner_MCTS_expand_tree_threaded :

## optimize_expression_given_Horner_threaded :



Many routines have of course a name that explains what they do. An interesting routine is RunThread. This

runs the ‘show’ for each thread.

B = InitializeOneThread(identity);

while ( ( wakeupsignal = ThreadWait(identity) ) > 0 ) {

switch ( wakeupsignal ) {

/*

## STARTNEWEXPRESSION :

## LOWESTLEVELGENERATION :

## FINISHEXPRESSION :

## CLEANUPEXPRESSION :

## HIGHERLEVELGENERATION :

## STARTNEWMODULE :

## TERMINATETHREAD :

## DOONEEXPRESSION :

## DOBRACKETS :

## CLEARCLOCK :

## MCTSEXPANDTREE :

## OPTIMIZEEXPRESSION :

*/

default:



MLOCK(ErrorMessageLock);

MesPrint("Illegal wakeup signal %d for thread %d",

wakeupsignal,identity);

MUNLOCK(ErrorMessageLock);

Terminate(-1);

break;

}

/* we need the following update in case we are using checkpoints. then we

need to readjust the clocks when recovering using this information */

timerinfo[identity] = TimeCPU(1);

}

EndOfThread:;

The worker is in a loop in which it receives a signal, and takes action depending on what the signal is. Of course

signals are relatively expensive, and hence one wants to minimize their use. An example



case CLEANUPEXPRESSION:

/*

Cleanup everything and wait for the next expression

*/

if ( AR.outfile->handle >= 0 ) {

CloseFile(AR.outfile->handle);

AR.outfile->handle = -1;

remove(AR.outfile->name);

AR.outfile->POfill = AR.outfile->POfull = AR.outfile->PObuffer;

PUTZERO(AR.outfile->POposition);

PUTZERO(AR.outfile->filesize);

}

else {

AR.outfile->POfill = AR.outfile->POfull = AR.outfile->PObuffer;

PUTZERO(AR.outfile->POposition);

PUTZERO(AR.outfile->filesize);

}

{

CBUF *C = cbuf+AT.ebufnum;

WORD **w, ii;

if ( C->numrhs > 0 || C->numlhs > 0 ) {



if ( C->rhs ) {

w = C->rhs; ii = C->numrhs;

do { *w++ = 0; } while ( --ii > 0 );

}

if ( C->lhs ) {

w = C->lhs; ii = C->numlhs;

do { *w++ = 0; } while ( --ii > 0 );

}

C->numlhs = C->numrhs = 0;

ClearTree(AT.ebufnum);

C->Pointer = C->Buffer;

}

}

break;

It should be noted here that AR and AT are two of the three substructs that are private to the worker. Details

about some of the variables can be found in the presentations of last year (2023), but we give the layout of the

main structs anyway:



#ifdef WITHPTHREADS

typedef struct AllGlobals {

struct M_const M;

struct C_const Cc;

struct S_const S;

struct O_const O;

struct P_const P;

struct X_const X;

PADPOSITION(0,0,0,0,sizeof(struct P_const)+sizeof(struct X_const));

} ALLGLOBALS;

typedef struct AllPrivates {

struct R_const R;

struct N_const N;

struct T_const T;

PADPOSITION(0,0,0,0,sizeof(struct T_const));

} ALLPRIVATES;

#else

typedef struct AllGlobals {



struct M_const M;

struct C_const Cc;

struct S_const S;

struct R_const R;

struct N_const N;

struct O_const O;

struct P_const P;

struct T_const T;

struct X_const X;

PADPOSITION(0,0,0,0,sizeof(struct P_const)+sizeof(struct

T_const)+sizeof(str

} ALLGLOBALS;

#endif

and then the macro’s

#ifdef WITHPTHREADS

#define AC A.Cc

#define AM A.M

#define AO A.O

#define AP A.P



#define AS A.S

#define AX A.X

#define AN B->N

#define AR B->R

#define AT B->T

#define AN0 B0->N

#define AR0 B0->R

#define AT0 B0->T

#else

#define AC A.Cc

#define AM A.M

#define AN A.N

#define AO A.O

#define AP A.P

#define AR A.R

#define AS A.S

#define AT A.T

#define AX A.X

#endif



The main problem outside the threads.c file is to pass the private struct to the routines that are run by the

workers if they need any information inside this struct. The regular way is to pass its address, if the calling

routine has this address available. If not there is the macro GETIDENTITY, but that one has to make a call to

a POSIX library routine, which is more expensive than just passing an address. But because sequential Form

does not use such a private struct we need again a flexible definition of macro’s to keep the sources identical:

#ifdef WITHPTHREADS

#define PHEAD ALLPRIVATES *B,

#define PHEAD0 ALLPRIVATES *B

#define BHEAD B,

#define BHEAD0 B

#else

#define PHEAD

#define PHEAD0 VOID

#define BHEAD

#define BHEAD0

#endif



after which we declare for instance the function Generator

extern WORD Generator(PHEAD WORD *,WORD);

and its header

WORD Generator(PHEAD WORD *term, WORD level)

and we use it with

if ( *termout && Generator(BHEAD termout,level) < 0 ) goto GenCall;

while GETIDENTITY is given by

#define GETIDENTITY int identity = WhoAmI(); ALLPRIVATES *B = AB[identity];

ALLGLOBALS A;

#ifdef WITHPTHREADS

ALLPRIVATES **AB;

#endif



With the above macro’s nearly all problems wrt keeping one set of sources have been solved. There are of course

problems with access to some variables, like dollar variables, specially if they have to be changed at runtime. In

that case we need locks. The same holds for writing messages. In code like

Print "Problems in term %t";

it could happen that several workers will try to write at the same time. This needs locks in order to avoid chaos.

And it is even better if one uses:

Print "Worker %w: Problems in term %t";

Such problems will always occur when one runs in parallel, but output of the workers goes to a single file/memory

location. The most complicated lock system is when a multi-worker Form program crashes, and Form has to

do a multi-worker cleanup in which the signals of the OS have to be held until after the cleanup. It maybe that

there are still some race conditions there.



1.4 Simplification

The simplification routines are original Form code, but this code can be treated almost like an external library.

The code was originally made by Jan Kuipers, after which Ben Ruijl has made a number of improvements as

part of his thesis work. But because this code is now about 10 years old, it should be possible to improve upon

it with AI techniques that were not available in the past.

The algorithms used inside the library have been explained in the literature. Here we will concentrate on how it

interfaces with the Form code. Of course we need a struct that contains all relevant data connected to settings

etc.

typedef struct {

union { /* we do this to allow padding */

float fval;

int ival[2]; /* This should be enough */

} mctsconstant;

int horner;

int hornerdirection;

int method;

int mctstimelimit;

int mctsnumexpand;

int mctsnumkeep;

int mctsnumrepeat;



int greedytimelimit;

int greedyminnum;

int greedymaxperc;

int printstats;

int debugflags;

int schemeflags;

int mctsdecaymode;

int saIter; /* Simulated annealing updates */

union {

float fval;

int ival[2];

} saMaxT; /* Maximum temperature of SA */

union {

float fval;

int ival[2];

} saMinT; /* Minimum temperature of SA */

int spare;

} OPTIMIZE;

typedef struct {

WORD *code;



UBYTE *nameofexpr; /* It is easier to remember an expression by name */

LONG codesize; /* We need this for the checkpoints */

WORD exprnr; /* Problem here is: we renumber them in execute.c */

WORD minvar;

WORD maxvar;

PADPOSITION(2,1,0,3,0);

} OPTIMIZERESULT;

These structs will be placed inside the A.O substruct (O is for output) because the optimization is a way to

present the output.



The options are of course read in the Format statement which is dealt with by the compiler. The statement is

then properly read in the file compcomm.c. Of course the default values are set in the startup.c file. The actual

optimization is done by a preprocessor instruction.

Because the actual optimization is done over expressions that contain only symbols, we use the ToSymbol feature

of Form. In addition we have to find a way to print the output with many generated variables. The easiest is

to use the feature for extra symbols in an array notation.



1.5 Polynomials

During the 90’s, when many of the challenges in using Form were with moments of structure functions, the

PolyFun was invented to make the programs much faster, and the expressions shorter. At a later stage it

became important to have rational polynomials, but because those are far harder to implement, it took its time.

Personally I had already a version with univariate rational polynomials, but simultaneously Misha Tentyukov

was working on a different solution, but using an external program that could be communicated with. This

worked for the problems that he had with calculations people were doing in Karlsruhe. Unfortunately this is

of course not ideal, because such communications cost a lot of overhead. But for a few years people were using

this system. Then Jan Kuipers managed to make a working system for Form, which at a later stage was

improved by Ben Ruijl. Of course, in a multivariate polynomial system the two tricky operations are the GCD

and factorisation. Having the GCD operation the PolyRatFun became possible in Form, but because that

GCD operation is rather costly, we had to implement in a way that is should be used as few times as possible.

This merits a special dirty flag in the flag field of the PolyRatFun and very careful manipulations when terms

are put together and normalised. Another problem with the PolyRatFun can be that its arguments can become

rather lengthy when the polynomials become complicated, and one has to manipulate the MaxTermSize very

carefully.



What is needed to hook up such a library?

We need of course the regular routines for addition, multiplication etc in the library. But the messy part is

inserting the code that calls the manipulation of the coefficients. In particular the change in the size of the

arguments of the PolyRatFun causes problems. In the past we could be sure that the sum of two twerms

would never take more space that the sum of the spaces of the two terms. This allowed a modest size for

the SmallExtension during sorting. Of this we cannot be sure now, and this shows itself during running with

complicated multivariate rational coefficients. Often we have to set much bigger sizes for the SmallExtension.

Also the value of MaxTermSize may have to be increased. But the last variable cannot be increased arbitrarily,

because the sizes of many buffers depend on it. One also has to become careful with the sizes of subfilepatches

,sublargepatches ,sublargesize ,subsmallextension ,subsmallsize ,subsortiosize ,subtermsinsmall in the setup. This

is explained in the lecture about the IBP reduction of a generic massless T1 topology in the Form course.



1.6 Diagram generation

Many projects in the language of Form involve the generation of Feynman diagrams in one way or another.

There are several diagram generators on the market, but sometimes it turns out that an extra effort is needed

to get them to do exactly what one needs. The most widely used generator seems to be QGRAF by Paolo

Nogueira, but it has been programmed in such a way that it is nearly impossible to customize it. Hence, when

it became clear that Toshiaki Kaneko was reprogramming the GRACE diagram generator into C++, it looked

very attractive to attach this library to Form. To this end a collaboration with Kaneko was set up, but it

was slowed down a lot by the Covid pandemic. Based on experience with QGRAF, some features have been

included making some steps easier. Kaneko also wrote a very clear manual. Hence much of what is needed is

now available as if it is native Form code. Of course such an implementation requires:

• external commands to control parameters,

• special functions,

• new types of variables, like particles,

• a good interface between the library and Form,

• the possibility to add new features in a relatively painless way.



The question is now how to make Form talk to the Kaneko library. Such a library needs to know about

particles and vertices. Hence the decision was made to introduce such new data types. In addition a very useful

feature would be to first run a program just on the topologies of the diagrams, to determine notations for such

topologies, and only afterwards run the program with the full set of diagrams. For that the numbering of the

topologies should be identical in both cases. The Kaneko generator can do this. When working with QGRAF

it always took much more programming and running time to determine the proper topology of the diagrams.

Another feature would be to be able to use more than one model in a single program. Of course one can prepare

#include files in which the particles and vertices are defined, but it becomes even easier when there is a variable

type called model which a name and its properties, like a list of its particles and its vertices.

The above indicates that we have to start with some compiler work to be able to read these new types of variables.

Once they have been entered in the lists of variables, we need commands or functions that do something with

them, and hence transfer the proper instructions to the Kaneko library. Hence (in structs.h)



typedef struct PaRtIcLe {

WORD number; /* Number of the function */

WORD spin; /* +/- dimension of SU(2) representation */

WORD mass; /* Number of symbol or 0 */

WORD type; /* -1: anti particle, 1: particle, 0: own antiparticle */

} PARTICLE;

typedef struct VeRtEx {

PARTICLE particles[MAXPARTICLES];

WORD couplings[2*MAXCOUPLINGS];

WORD nparticles;

WORD ncouplings;

WORD type;

WORD error;

WORD externonly;

WORD spare;

} VERTEX;



typedef struct MoDeL {

VERTEX **vertices;

WORD *couplings;

UBYTE *name;

void *grccmodel;

WORD legcouple[MAXLEGS+2];

WORD nparticles;

WORD nvertices;

WORD invertices;

WORD sizevertices;

WORD sizecouplings;

WORD ncouplings;

WORD error;

WORD dummy;

} MODEL;

The particles are actually a special type of vertex. This means that we do not have to introduce too much code

for them. We mainly need code for entering their properties. Vertices and models need however a ‘flexible’

amount of space, and hence involve memory allocations.



First we need routines for reading the Model, Partcle and Vertex declarations. This is in principle straightforward.

these routines can be found in the file model.c. To keep things ‘simple’ a particle is stored as a rather simple

vertex. And to be able to recognise particles from vertices, all declarations of particles and vertices should be

inside the definition of a model with the particles before the vertices. During the running, when diagrams have

been generated the vertices will be indicated by a function node . In each vertex we have to be able to attach

coupling constants, which will be symbols, and there should be provisions to have more than a single one.

The next step is to provide a way to invoke the diagram generator. This is done with the special function

diagrams . In an earlier version we had a more primitive system in which the function topologies could determine

the topologies for a given reaction. The functions that would be involved are in the file diagrams.c. This approach

was however abandoned when it became clear that the Kaneko generator provided nearly everything we needed.

Hence the new function diagrams was created, but for backward compatibility the topologies function still

exists. It may be removed in the future if it becomes sufficiently clear that is is no longer being used.

The diagrams function is recognised and has a legal set of arguments (this is done in the routine TestSub in

generator.c) it is properly flagged and the routine Generator will then call the routine GenDiagrams in the file

diawrap.cc. It is a generic way of dealing with libraries written in C++, to have a wrapper file that is also

written in a mixture of C and very simple C++. In this file all the Form interfacing with the grcc.cc file takes

place. The only thing we have done to modify the grcc.cc file is to add folding information to make it easier to

have a look at its code when needed.



To pass the proper parameters it seemed best to define a number of preprocessor variables with suggestive names,

allowing any combination to be passed as a sum of the various options:

PutPreVar((UBYTE *)"ONEPI_",(UBYTE *)("1"),0,0);

PutPreVar((UBYTE *)"WITHOUTINSERTIONS_",(UBYTE *)("2"),0,0);

PutPreVar((UBYTE *)"NOTADPOLES_",(UBYTE *)("4"),0,0);

PutPreVar((UBYTE *)"SYMMETRIZE_",(UBYTE *)("8"),0,0);

PutPreVar((UBYTE *)"TOPOLOGIESONLY_",(UBYTE *)("16"),0,0);

PutPreVar((UBYTE *)"NONODES_",(UBYTE *)("32"),0,0);

PutPreVar((UBYTE *)"WITHEDGES_",(UBYTE *)("64"),0,0);

/* Note that CHECKEXTERN is 128 */

PutPreVar((UBYTE *)"WITHBLOCKS_",(UBYTE *)("256"),0,0);

PutPreVar((UBYTE *)"WITHONEPISETS_",(UBYTE *)("512"),0,0);

PutPreVar((UBYTE *)"NOSNAILS_",(UBYTE *)("1024"),0,0);

PutPreVar((UBYTE *)"NOEXTSELF_",(UBYTE *)("2048"),0,0);

The CHECKEXTERN is for debugging purposes.



The file diawrap.cc has a few routines, some of which are called by the regular Form code, and some are called

by the library, like ProcessDiagram.

// ## Includes : diawrap.cc

// ## LoadModel :

// ## ConvertParticle :

// ## ReConvertParticle :

// ## numParticle :

// ## ProcessDiagram :

// ## fendMG :

// ## ProcessTopology :

// ## GenDiagrams :

// ## processVertex :

// ## GenTopologies :

The specific code in these routines is of course not to be presented here. There are more tham 1000 lines.

One feature is still missing: to bring diagrams to a canonical form. There exist libraries for this, but the

development has not reached their implementation yet. This canonicalisation is important when diagrams

are manipulated during further processing, and lines are modified, or become missing. To determine the new

topology can be a time consuming operation, and hence a general and fast library would be appreciated.



1.7 Floating point

The implementation of arbitrary precision floating point numbers was long overdue. This had been planned

already in the earliest stages of the development of Form, but somehow there was never the immediate need,

until a few years ago. As explained before, the notation of the coefficients in the terms left room for floating

point numbers provided the number of Form words occupied by them would be even. The odd lengths are

for fractions. Unfortunately since then so much code was added, that the prospect of having to add the even

case everywhere (potentially more than 1000 places) was not only discouraging, but also the chance that this

could be done without introducing serious bugs made me look for a different solution. This was found in the

introduction of a new function float , internally indicated by FLOATFUN. This has the advantage that we only

deal with floating point numbers if they are really present, and we do not have to worry about them in cases

that they do not occur. There is of course one side condition, and that is that when we do have a floating point

number in a term, the rational coefficient needs to be absorbed into it. This means that if a normalized term

contains the function float , the rational coefficient must be either 1/1 or -1/1. We try to absorb the sign of the

term in the rational coefficient, because that is much easier for the print routines.



Let us see what we need.

• A statement to activate the floating point numbers and the precision to be used.

• A statement to deactivate the floating point numbers.

• A notation for the arguments of the float function. If the arguments do not fulfil this notation, the floating

point number is not recognized as such.

• Conversion routines from rational to float et vise versa.

• Routines to read and write floating point numbers.

• Conversion to and from GMP floating point numbers.

• Code in the Normalize routine to combine two or more float functions or a float and a rational coefficient.

• Code in the sort routines that allows the addition of two terms.

• A number of built-in numerical functions to arbitrary precision. This is of course an open ended project

and not necessarily trivial, because the fixed precision functions can use methods that are not applicable for

arbitrary precision, like Chebychev expansions.



Because programming arbitrary precision is a lot of work, and may need maintenance when better algorithms

are discovered, we use the floating point facilities of the GMP library and when we need to evaluate the standard

functions we use also the MPFR library. Both libraries are well documented and part of many standard

distributions. They provide us with the basic lower level functions, but we need to hook them up with the

complete Form sources which is quite a lot of work. In addition the MPFR provides us with the ’standard’

functions like sin , cos etc.

The first command we need is

#StartFloat

#StartFloat Precision

#StartFloat Precision MaxWeight

in which the parameters are numbers. Precision indicates the precision of the floating point numbers in bits.

MaxWeight indicates the maximum weight of potential Multiple Zeta Values or Euler sums. If there are no

parameters the floating point precision is set to DEFAULTPRECISION if it is the first call to StartFloat, and

otherwise to the value used in the most recent call to StartFloat. If MaxWeight is not present, its value is set to

zero.

It should be noted that currently the floating point system will only work on 64-bits computers.



Because we will also provide routines for Multiple Zeta values (more about that below) we might need to

allocate space for arrays that they need during evaluation. The allocations for the MZV’s have to be done for

each worker separately. Hence they are done in a separate routine SetupMZVTables. The exact allocations seem

a bit strange. They will be discussed in the routines for the computation of these MZV’s.

The preprocessor instruction

#EndFloat

closes the floating point system by releasing all allocated buffers for it. This uses the routines ClearfFloat and

ClearMZVTables. If a #StartFloat is invoked without ending a previous one, internally Form calls those two

routines first, before starting a new system.



Now let us have a look at how floating point numbers are stored inside the GMP library.

typedef struct

{

int _mp_prec; Max precision, in number of ‘mp_limb_t’s.

Set by mpf_init and modified by

mpf_set_prec. The area pointed to by the

_mp_d field contains ‘prec’ + 1 limbs.

int _mp_size; abs(_mp_size) is the number of limbs the

last field points to. If _mp_size is

negative this is a negative number.

mp_exp_t _mp_exp; Exponent, in the base of ‘mp_limb_t’.

mp_limb_t *_mp_d; Pointer to the limbs.

} __mpf_struct;

and with this goes

typedef __mpf_struct mpf_t[1];



In the current implementation we have

sizeof(int) = 4

sizeof(mpf_t) = 24

sizeof(mp_limb_t) = 8,

sizeof(mp_exp_t) = 8,

sizeof a pointer is 8.

Somehow we have to get this information into the float function and back. This we do with the 4 arguments

-SNUMBER _mp_prec

-SNUMBER _mp_size

exponent which can be -SNUMBER or a regular numerical term

the limbs as n/1 in regular term format, or just an -SNUMBER.



FORM 5.0Beta (Apr 9 2023) Run: Thu May 16 10:44:52

2024

#StartFloat 200

Symbol x,y;

Format 60;

Local F = x*y/3;

ToFloat;

Print " %r";

.end

39 1 6 20 1 21 1 116 29 0 -16 4 -16 4 -16 0 20

0 18 1431655765 1431655765 1431655765 1431655765 1431655765

1431655765 1431655765 1431655765 1 0 0 0 0 0 0 0

17 1 1 3

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 160

0.00 sec out of 0.00 sec



At the same time we have to give the float function a protected status with respect to operations that work on

nearly all other functions, like Transform, or things like

id f?(x1?,x2?,?a) = f(x1+x2,?a);

Also, for not upsetting too many of the internal routines, we place the float function as last subterm, before the

rational coefficient. This requires of course some extra code in the Normalize routine and the write routines.

Another consideration should be what to do with a float function when we use #endfloat. At that moment

the function becomes a regular function with no special status. And after a new #StartFloat we have to test

whether a float function does indeed qualify as a proper floating point function.



At this point we are ready to set up the internal low level routines. There are actually quite a few:

#[ Low Level :

In the low level routines we interact directly with the content

of the GMP structs. This can be done safely, because their

layout is documented. We pay particular attention to the init

and clear routines, because they involve malloc/free calls.

## Explanations :

## Form_mpf_init :

## Form_mpf_clear :

## Form_mpf_empty :

## Form_mpf_set_prec_raw :

## PackFloat :

## UnpackFloat :

## TestFloat :

## FormtoZ :

## ZtoForm :

## FloatToInteger :

## IntegerToFloat :



## RatToFloat :

## FloatFunToRat :

## FloatToRat :

## ZeroTable :

## ReadFloat :

## CheckFloat :

#] Low Level :

Most functions have a name that is rather evident. Z is the GMP type for long integers. These are packed

differently from the way Form packs them and hence we need conversions.



The interesting routine here is FloatToRat. This conversion is done by means of repeated fractions in which

the routine keeps track of the remaining accuracy. The fraction terminates if one runs into a number N in 1/N

which is bigger than half the remaining accuracy.

#startfloat 200

Format 72;

Off Statistics;

L F = 355/113+1/1000000000000000000000000000000000000000000000000;

ToFloat;

Print;

.sort

F =

3.1415929203539823008849557522123893805309734513284336283185e+00;

Hide;

L F1 = 1/(F-3);

Print;

.sort

F1 =



7.062499999999999999999999999999999999999999999950121093753e+00;

L F1 = 1/(F1-7);

Print;

.sort

F1 =

1.6000000000000000000000000000000000000000000012768999999222e+01;

L F1 = 1/(F1-16);

Print;

.sort

F1 =

7.8314668342148222543733000357047579871740558022392803190814e+43;

Drop F1;

L F2 = 3+1/(7+1/16);

Print;

.end



F2 =

355/113;

For cases in which there is indeed a valid fraction this is usually sufficient (provided that the floating point

precision suffices as well). When one is not sure there is sufficient accuracy it is best to run with two different

floating point accuracies and see whether the fractions change. Usually one can see whether the fractions have

the proper structure. If all other fractions have two or three digits in the numerator and the denominator, and

one of them has a few hundred digits.....



The next level of routines can be called from the other parts of Form. They are

#[ Float Routines :

## SetFloatPrecision :

## PrintFloat :

## AddFloats :

## MulFloats :

## DivFloats :

## AddRatToFloat :

## MulRatToFloat :

## SetupMZVTables :

## SetupMPFTables :

## ClearMZVTables :

## CoToFloat :

## CoToRat :

## ToFloat :

## ToRat :

#] Float Routines :

The Co routines are the compiler routines for the ToFloat and ToRat statements, while the last two routines

execute these statements during runtime.



Sorting introduces extra complications. The fact that we have activated floating point numbers does not imply

that all terms have a floating point coefficient. That would only be the case after a ToFloat statement. Hence

we can have terms with a rational coefficient and terms with a floating point coefficient. In addition the rule is

that a PolyRatFun cannot have floating point numbers in its arguments. This would cause too many problems,

even though one would expect this to help a lot with efficiency in some programs.

#startfloat 1000

Format 72;

CF f;

S x,y;

L F = f(x/3+y/5);

Print;

.sort

F =

f(1/5*y + 1/3*x);

ToFloat;

Print;

.sort



F =

1.0e+00*f(1/5*y + 1/3*x);

Argument f;

ToFloat;

EndArgument;

Print;

.end

F =

1.0e+00*f(2.0e-01*y +

3.333333333333333333333333333333333333333333333333333333333333333\

33333333333333333333333333333333333333333333333333333333333333333\

33333333333333333333333333333333333333333333333333333333333333333\

33333333333333333333333333333333333333333333333333333333333333333\

333333333333333333333333333333333333333333333333333e-01*x);



We need two new routines for adding coefficients:

1. AddWithFloat for SplitMerge which sorts by pointer.

2. MergeWithFloat for MergePatches etc which keeps terms as much as possible in their original location.

The routines start out the same, because AT.SortFloatMode, set in Compare1, tells more or less what should

be done. The difference is in where we leave the result.



In the future we may want to add an optional feature that makes the result zero if the sum comes within a

certain distance of the numerical accuracy of the floating point numbers, like for instance 5% of the number of

bits. There should not be a need to carry many terms around of which the coefficients are infinitesimal. This

may not be very satisfactory for mathematicians, but when one considers problems of numerical stability, one

should always run either with very high precision or with two different precisions.

With all of the above, we still miss a number of things: the optimizations cannot work with floating point

numbers, and, as mentioned before, PolyRatFun cannot deal with them either. Optimizations with floating

point numbers could be rather tricky, and one may wonder what extra problems it would introduce.



The next step is something that has been in preparation for a long time: implementation of a number of standard

functions and constants. Of course we would like those also to be to arbitrary precision. The GMP library does

not provided for that, but the MPFR library does. It provides the standard numerical functions that one will

also find in Fortran and C. Unfortunately the internal notations of the two libraries are not exactly identical.

The differences deal for a big part with rounding, but it means that occasionally we have to convert. This is

not very complicated, and the structure/naming of the variables is rather similar. All dealings with the MPFR

library have been collected in the file evaluate.c. Of course functions like sin , cos have special cases for which

we can provide an immediate and exact answer. This is all treated in the routine EvaluateFun. If the addition

of new functions is required, it should be done in the same way as done inside this routine.



At this point we still miss functions that would be very useful for particle physics programs. Of course it would

be an open-ended project to add all functions that are used in the modern literature, because frequently new

functions are introduced. At the moment only the MZV’s and the Euler sums have been implemented. The

constants ee (for the number e) and em (for the Euler-Mascarponi constant) should still be added. The nuber

pi is available, but one should not use Form to compute it to millions or billions of digits. For that one can

find dedicated programs on the internet.

One extra class of functions we would like to have consists of varieties of the Multiple Zeta Values. In first instance

the MZV’s and the Euler sums, but at a later stage sums involving different roots of unity as well. The paper

by Borwein, Bradley, Broadhurst and Lisonek (Special values of Multiple Polylogarithms) provides information

about how to program these functions as a combination of nested sums and it allows the determination of the

depth of the sums. Because these sums can be done best, using up to w intermediate arrays, in which w is

the maximum weight of the sums, and n is their length, which is related to the number of binary digits in the

floating point numbers, we allocate these arrays when setting up the floating point numbers.



The evaluation of the MZV’s and Euler sums requires some extra care, because they involve nested sums in

which the maximum number of nestings is equal to the weight, and each step in the sums gains only one bit in

accuracy. Hence, naively we would have at a weight 20 MZV with 5000 bits of accuracy O(500020) steps. This

would be prohibitive. The solution is to tabulate the innermost sum. Then use this table to make a table of the

next sum. After this we do no longer need the innermost sum, and we can use this space for the table of the

next sum. Etc. Now we only need O(5000 × 20) steps. In principle one can gain a little bit more by keeping

the tables for a number of the inner sums but this would require much space. In practise, we only keep very few

sums that occur very frequently. The result is a very efficient routine which can compete with the ‘best in the

business’. Because the sums we need are all expansions in a value x = 1/2, internally we have a function that

evaluates them with the above algorithms, and this function can also be accessed externally as mzvhalf .



Together this involves the following routines:

#[ MZV :

## SimpleDelta :

## SimpleDeltaC :

## SingleTable :

## DoubleTable :

## EndTable :

## deltaMZV :

## deltaEuler :

## deltaEulerC :

## CalculateMZVhalf :

## CalculateMZV :

## CalculateEuler :

## ExpandMZV :

## ExpandEuler :

## EvaluateEuler :

#] MZV :

In principle one can use the BBBL paper also for working out the sums over an alphabet of different roots of

unity. This has been done by Oliver Schnetz to construct tables for those MZV’s, because they may be needed

in future loop integrals, but Form does not have them (yet?).



It would be nice to have a general Hpl function to arbitrary precision, but that is at the moment only in the

contemplation stages. It seems like a good project for someone who wants to familiarise themselves with the

topic.


