
Tips, Tricks and the Future

FORM and Symbolica developers meeting

Josh Davies

29th May, 2024

Introduction

Tips and Tricks:
• Resolving performance bottlenecks in my own computations.
• Not necessarily new to you.
• Not necessarily optimal for all problems (even mine!).
• See also: “FORM Cookbook” https://github.com/vermaseren/form/wiki/FORM-Cookbook

The Future:
• Current new features of FORM 5 (see also Jos’ talks): Float mode, Diagram generator.
• Bug fixing and Testing.
• Development ideas and discussion.

1/18

https://github.com/vermaseren/form/wiki/FORM-Cookbook

Tips and Tricks: Summing many saved expressions
Common operation: e.g. summing individually-computed Feynman diagrams, etc.
Obvious method:

✘ Not parallel in TFORM.
Load d1000.sav;
Local amp =

#do i = 1,1000
+ d‘i’

#enddo
;

Better:
✓ Particularly if sorting is

complex (PolyRatFun).
☞ ifmatch can be crucial!

Likely slower than the
above, otherwise.

Local amp = sum_(x,1,1000,tmp(x));
.sort
#do i = 1,1000

Identify ifmatch->jump tmp(‘i’) = d‘i’;
#enddo
Label jump;

Example: sum 5220 files, total 2.5G. PolyRatFun used in merging: 2M to 43K terms.
• 442s → 96s. (Also: just move PolyRatFun to next module: 105s). (16-worker 3955WX)

[1] But, loading a single large expression is slow. Double copy, single-thread generation.
(Try to avoid this where possible; split into a few smaller expr if terms will never merge anyway.) 2/18

Tips and Tricks: Compressing saved expressions
Saved expressions are not compressed (but are very compressible: e.g. gzip ratio >15x).

Work-around with #system:
✓ Save disk space.
✓ Save network bandwidth.
☞ Essential for huge expr.

Save /tmp/big.sav;
#system gzip < /tmp/big.sav > /network/big.sav.gz
#system rm /tmp/big.sav

#system gunzip < /network/big.sav.gz > /tmp/big.sav
Load /tmp/big.sav;
#system rm /tmp/big.sav

[Also: #pipe gunzip < /path/results.h.gz]

Another option, use a transparently compressing filesystem (e.g., ZFS, btrfs):
✓ Save disk bandwidth.
✓ Also compresses the scratch (hide) files (.sc0, .sc1, (.sc2))
☞ Measurable performance improvement for read/write heavy computations.
✘ Easy on your own machines, unlikely on e.g. university HPC resources.

[2] FORM could compress these files. Bonus: way to use other compression algorithms?
3/18

Tips and Tricks: Inserting (parts of) expressions into expressions
Useful when, for example:
• Determining renormalization constants (access pole-parts of an expression).
• Solving systems of equations (access coefficient of a symbol).

dst: 3K → 24M → 25 terms
• 21s on 8-worker 6850U.
✘ Very many accesses of
src bracket contents.

☞ Bracket+ : 18s

Local src = (1+y)ˆ3 * (1+x)ˆ6;
Local dst = (<f(0)>+...+<f(6)>)ˆ8;
Bracket x;
.sort
#do i = 0,6

Identify f(‘i’) = src[xˆ‘i’];
#enddo

Better, use dollar variables:
• 2s.
✓ Only 7 accesses of src

bracket contents.

#do i = 0,6
#$f‘i’ = src[xˆ‘i’];
Identify f(‘i’) = $f‘i’;

#enddo

(Of course one could do better for this contrived example by generating fewer terms. But generating
and sorting 24M terms is not a particularly big deal for FORM, clearly.)

4/18

Tips and Tricks: Hiding away parts of expressions
Often we operate on a subset of objects which appear in the terms [not terms subset: Spectator]

☞ It can improve performance a lot to hide away the irrelevant content temporarily.

test has 47K terms, 2.2MB.
• 88s.
✘ 21M terms generated.

Collect in function args.:
• Now 51 terms, 3.4MB.
• 22s.
✘ Heavy sorting, potential

disk IO every module.

Local test = (<f(0)>+...+<f(6)>)ˆ6 * (1+x)ˆ50;
Bracket x;
.sort
Collect hide;
#do i = 1,10

Identify x = x+1;
Identify x = x-1;
.sort

#enddo
Identify hide(y?) = y;

Use ArgToExtraSymbol:
• Now 51 terms, 1.6KB.
• 0.25s.
✓ Easy sorting, no disk IO.
✘ Costs memory.

Collect hide;
ArgToExtraSymbol hide;
...
Identify hide(y?) = y;
FromPolynomial;

5/18

Tips and Tricks: Hiding away parts of expressions (II)
Alternative method using Keep Brackets; and the Term environment.
• Bracket away irrelevant content.
• Use Keep Brackets; to hold bracket multiplication until the end of the module.
• Use Term environment to Sort; before bracket multiplication.

• Keep Brackets; only:
35s.

• With Term env: 0.35s.
✓ No large memory cost.
✘ No disk IO saving.

Local test = (<f(0)>+...+<f(6)>)ˆ6 * (1+x)ˆ50;

#do i = 1,10
Bracket x;
.sort
Keep Brackets;
Term;

Identify x = x+1;
Identify x = x-1;

EndTerm;
#enddo

[3] FORM could make this easier; extension of the Keep Brackets; mechanism?
6/18

Tips and Tricks: Inserting IBP tables in FORM

I usually insert IBP tables into amplitudes in FORM:
• Amplitude is already in FORM format.
✘ Doing this in Mathematica is usually slow.
☞ (“Modern techniques”: directly reconstruct amplitude from finte-field samples).

[4] FORM could provide more functionality for finite-field sampling?

For “small problems” (replacing O(1000) integrals):
• Big list of Identify statements is OK (from Kira’s kira2form output, for e.g.).

☞ Adding ifmatch->jump construction helps somewhat.

For anything larger, use a TableBase.
• Filling a CTable “online” OK, but not if you do it many times.
• Kira provides kira2formfill output for this purpose.

7/18

Tips and Tricks: Inserting IBP tables in FORM (II)
For multivariate problems, MaxTermSize often becomes an issue. For my problems, I post-process
the IBP tables (Mathematica) before creating the TableBase.

Format:
• Num. ep and den. factors containing ep

outside of PolyRatFun.
• denep may contain other variables.
• Smaller, but more numerous, terms.

+ G54(1,1,1,1,1,1,1,-1,-1) * (
+ denep(ep - 1/2)*epˆ-1 * prf(...)
+ denep(ep - 1/2)*ep * prf(...)
+ denep(ep - 1/2) * prf(...)
+ denep(ep - 1/2)ˆ2*epˆ2 * prf(...)
+ denep(ep - 1/2)ˆ2*ep * prf(...)
+ denep(ep - 1/2)ˆ2 * prf(...)

Same idea, if we will also expand in other variables. E.g., dent(1+t)*denept(ep-2*t)*tˆ-1.

Then follows a series expansion procedure: #call denexpand(denep,ep,‘DEPTH’,prf).

AntiBracket in ep,denep,prf yields bracket content which will never merge with other brackets.
☞ Expand the bracket contents without .sort, using Collect and then a Term environment.

(Related to Slides 5, 6).

8/18

Tips and Tricks: IBP reduction with LiteRed rules
For small computations/easy integral topologies, it is convinient to compute everything in FORM,
rather than needing a separate IBP reduction step and then inserting tables after.

✓ Use reduction rules determined by LiteRed within FORM.
☞ For multivariate problems, MaxTermSize quickly becomes a problem.

The FORM code must apply LiteRed’s sector mappings, zero sectors, and reduction rules:

j[tri1l1,(n1_)?Positive,(n2_)?NonPositive,(n3_)?Positive]
/;!(n2==0||n3==1) ->

((1+n2)*q33*j[tri1l1,n1,2+n2,-2+n3])/((-1+n3)*q11) + ...

Identify ifmatch->jump tri1l1(n1?pos_, n2?neg_, n3?{,>1}) =
tri1l1(n1,2+n2,-2+n3) * prf(q33+n2*q33,-q11+n3*q11) + ...

This is something like a MINCER/FORCER-style reduction for other integral topologies.

I have a (nasty) bash script to make the conversion, but this could be automated in a cleaner way...

9/18

The Future: New Features of FORM 5

Diagram Generator:
• Direct interface to diagram generator (Toshiaki Kaneko).
• Some new syntax: Model, topo , diagram , ...
✓ Avoid tricky pattern matching for topology identification.
✘ Currently has some bugs, doesn’t work quite as described in the manual.

Floating Point Mode:
• Arbitrary precision float representation of coefficients.
• Reconstruct rational numbers from floating representation.
• #StartFloat, ToRational, ...

See Jos’ slides for more details.

10/18

The Future: Bug Fixing
Many bugs have been fixed (or have a proposed fix) over the last few months (JD, Takahiro Ueda),
some of which have made computations tricky and needed to be worked around.

✓ Incorrect PolyRatFun results due to bugs in sort ordering (PR #482)
✓ Sorting bugs in arguments or dollar vars (PR #515 #517 #520)
✓ Crashes in MakeInteger, Transform statements (PR #509 #516)
✓ Crashes for argument-field wildcards with >8192 args (PR #490, #519)
✓ Improved Format Mathematica; output (PR #472 #491)
✓ Some improved warnings, syntax fixes (PR #473 #481 #500 #502 #513)
☞ ? Rare crash when loading certain Save files (Issue #420, #484)

Bug fixes are in current FORM 5 code, and applied to the 4.3.1 branch → 4.3.2 bugfix release?

The current FORM 5 or 4.3.1 branch ready for use for real computations (better than v4.3.1).

Report bugs/strange behaviour on the Issue tracker! https://github.com/vermaseren/form/issues

Also collect tips for developers on the wiki:
• First article, VSCode (TU): https://github.com/vermaseren/form/wiki/VS-Code-Tips-for-FORM-Developers

11/18

https://github.com/vermaseren/form/issues
https://github.com/vermaseren/form/wiki/VS-Code-Tips-for-FORM-Developers

The Future: Testing
FORM has a ruby-based test suite in the check directory (Jens Vollinga, Takahiro Ueda).
• Includes examples from the manual, new features, and scripts reproducing (fixed) bugs.
• After making changes, run tests locally with make check.
• Runs on GitHub’s CI runners on commit:

• Checks build on Ubuntu, macOS, Windows.
• Runs tests for {,t,par}form, also with valgrind.

249 tests, 869 assertions, 0 failures, 0 errors, 5 pendings, 0 omissions,
0 notifications

100% passed

More tests means better reliability!
• Contribute your own tests: add to check/user-tests.frm.

• Add fold containing your code *--#[GitHub username Test name :, and some assertions.
• Particularly scripts with tricky performance optimizations, workarounds, or use rarely-used features.

Tests mean that these scripts should not break in the future.
☞ Should be fast-running, a few seconds at most.

12/18

The Future: Testing (II)
*--#[jodavies_example :
Symbol x;
Local test = x;
Identify x = 2;
Print;
.end
assert succeeded?
assert result("test") =˜ expr("2")
*--#] jodavies_example :

Check for error conditions:

assert runtime_error?("Term too complex during normalization")
assert compile_error?("Illegal position for #")

Skip test under certain conditions:

#require wordsize == 4
#pend_if mpi? || valgrind?

See also: check/README.md.
13/18

The Future: Contributing

Making contributions:
☞ Work on your own fork, create a pull request back into vermaseren/form.

From this workshop hopefully we’ll have various ideas of things to implement.
✘ Inefficient if we have overlapping efforts on the same changes.
☞ Proposal: announce intention to work on something on GitHub with a draft pull-request/issue.

14/18

The Future: Development Ideas

[1] But, loading a single large expression is slow. Double copy, single-thread generation.

• Load data directly from sav files, no double copy?
• Single-thread term generation is also an issue with defining expressions.

[2] FORM could compress these files. Bonus: way to use other compression algorithms?

• Compress save files, and also scratch files (tricky: bracketing)?
• Interface to a choice of compression libraries: zstd, snappy, etc... ?

[3] FORM could make this easier; extension of the Keep Brackets; mechanism?

• Sort before multiplying brackets out? [Term env. provides
• Multi-module version (tricky: scratch files removed)? these features to]
• Option to work inside the brackets, rather than outside? some extent.]

[4] FORM could provide more functionality for finite-field sampling?

• Modulus <value>; exists already. Add a way to automatically replace symbols with values?

15/18

The Future: Development Ideas (II)

PolyRatFun performance

• Some room for improvement in the existing code.
• Could just use FLINT (or optionally Symbolica)? Perform well for IBP-reduction software.

Tablebase "name" Open, readonly;

• Currently Tablebase "name" Open; requires write access to the file.
• Annoying permissions when sharing with other users.

On InParallel;

• Multi-module InParallel; – easier to use, e.g. when calling prc which include .sort.

On Strict;

• Mode which enforces some limitations (for e.g., 16 char saved expr name limit)?
• Does not promise backward compatibility?

16/18

The Future: Development Ideas (III)

Interoperability: it could be easier to import/export from/to other software:

• Read Mathematica-format expressions directly?
• Deal with [], I, i , etc...
• Have to be a bit careful on the Mathematica side, re: nasty denominators and brackets.

• Some intermediate format (JSON?), readable by FORM, Mathematica, Symbolica, ... ?

Improve documentation:

• Make FORM more beginner friendly?
• Update tutorial (André Heck, 2000), add new FORM features, content from Jos’ lectures.
• Move to GitHub pages (gh-pages branch) https://vermaseren.github.io/form/

• More searchable.

• Commentary in the source code?
• Improve/check for missing Doxygen comments?

17/18

https://vermaseren.github.io/form/

The Future: Other Things to Discuss?
Time-frame for FORM 5 release?

✘ Certainly there are a few bugs to sort out in the diagram generator.
☞ Are there any particular open bugs that YOU would like to see fixed?
☞ More regular point releases for bug fixes/minor features?

Is any performance penalty acceptable, in exchange for reliability, better crash info?
• Keep debug symbols in form build? [“Probably” no noticable effect.
• Split up large memory allocations into multiple small ones? Not benchmarked in detail.]

Drop 32-bit support?
• Already various tests in the suite are disabled for 32-bit FORM builds.
• It can never support commonly-used large MaxTermSize for multivariate problems.
• Does anyone use it? Maybe, for e.g., on an older Raspberry Pi model etc.

ParFORM support?
• Similarly, some tests in the suite are disabled for ParFORM (some should be easy to fix).
• Does anyone use it? Modern multi-core high-memory machines out-scale FORM...
• Fix everything? Keep, but no promises that new features will work with it? Remove?

Windows support?
• Not supported, TU has branches to improve things, including building with MSVC.
• “Just use WSL”?

18/18

	Introduction
	

	Tips and Tricks
	

	Towards FORM 5
	

