

ttbar threshold studies

Laura Pintucci, Matteo Defranchis with help from Marcel Vos

29/02/2024

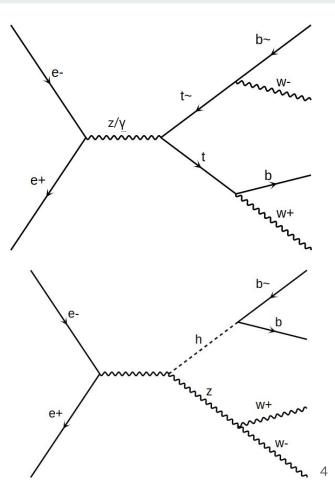
Objectives and Plans

Cross-section extraction at ttbar threshold scan

- > Analysis of MC samples produced at threshold \sqrt{s} :
 - Find realistic selections to separate signal from background
 - Implement *b*-tagging technique, possibly calibrating it in situ
 - b-tag counting method \rightarrow extract simultaneously ttbar cross-section and b-tag efficiency from number of events with 1/2 b-jets [https://arxiv.org/pdf/2308.09529.pdf]
 - In general aim for minimal selections that are stable over different \sqrt{s} for the threshold scan
- Uncertainties estimation

Objectives and Plans

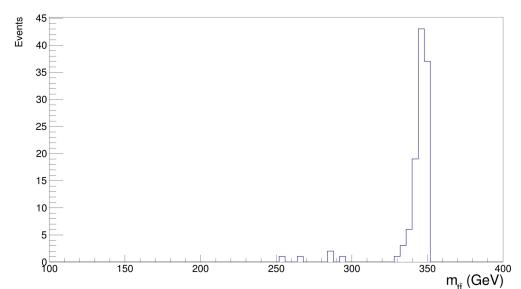
Cross-section extraction at ttbar threshold scan


- \succ Analysis of MC samples produced at threshold \sqrt{s}
- Uncertainties estimation:
 - theoretical uncertainties (most of them already available) → it can be interesting to see how big is the impact on the final measurement if some of these uncertainties are reduced in the future
 - statistical uncertainty \rightarrow related to various colliders
 - experimental uncertainties → machine related unc (e.g. energy spread), acceptance and reconstruction unc., and so on
 - study various scenarios to find what is more important to improve for a better final precision
 - \circ study correlation of systematics across various \sqrt{s} to check effects on final fit results
 - assume beam energy known perfectly for cross-section extraction and then convolute results with various beam energy spread scenarios

Objectives and Plans

Cross-section extraction at ttbar threshold scan

Samples to use:


- Full simulation samples not yet available at desired √s → will be produced soon
 - plan to analyse FCC ttbar sample with method explained in previous slide
 - need to separate ttbar and single top processes (signal) from ZH (background)
 - can use other papers to take into consideration reduction of other background processes (need to check efficiency is stable over threshold scan)
- Currently available particle level sample e+ e- \rightarrow µ+ µ- v v b b at \sqrt{s} = 350 GeV
 - $\circ~$ main process e+ e- \rightarrow t t \rightarrow W b W b, also single top and ZH
 - $\circ~$ used for initial study of the kinematic of various processes

Whizard sample: e⁺e⁻→WbWb

ttbar invariant mass distribution:

- we want to select ttbar process decaying to WbWb $\rightarrow \mu + \mu vvbb$
 - $\circ~$ selecting a final state with 2 muons and 2 b \rightarrow efficiency 1.1%
 - invariant mass distribution for ttbar show expected peak, asymmetric toward lower energy values

5

Backup