

Beam diagnostics developments for the HIE-ISOLDE linac

Francesca Zocca

Instituto de Estructura de la Materia – CSIC , Madrid CERN - BE/BI/PM

M.A.Fraser, E.Bravin, M.Pasini, D.Voulot, F.Wenander

EURISOL-NET (ENSAR/NA03) Working Group meeting - 27-28 June 2011

Outline

- Beam instrumentation developments for the HIE-ISOLDE upgrade of the REX linac (HIE-REX)
- Silicon detector monitor for cavities phase-up
- Prototype monitor structure
- Beam test setup
- Measurement results (cavity phasing, energy & timing beam profiles)
- Conclusions & future developments

Beam diagnostics tasks for HIE-REX

Main beam parameters to be measured:

- intensity
- position
- transverse profile
- transverse emittance
- energy relative (cavity phase-up)

- absolute

Iongitudinal profile and emittance

(energy and time spread)

Beam diagnostics tasks for HIE-REX

Main beam parameters to be measured:

- intensity
- position
- transverse profile

diagnostic box ("short-box") in each inter-cryomodule region → Faraday cup, slit and current-sensitive device (for low intensity beams)

- transverse emittance transverse emittance meter
- energy relative (cavity phase-up) —> silicon monitor

- absolute *ToF system...*

 longitudinal profile and emittance (energy and time spread)

(spectrometer) solid state detectors

6 cryomodules with superconducting cavities

- Increase in the number of cavities: from 5 (REX) to 34 (HIE-REX)
- Phase-up standard procedure based on the relative measurement of the beam average energy vs. the RF phase downstream the cavity
 - \rightarrow REX phase-up based on the use of the switchyard dipole magnet
 - \rightarrow robust and reliable procedure but time consuming and difficult to automate

Need for a quick and eventually automated phase-up

Silicon detector monitor

Based on the experience at the ISACII accelerator at TRIUMF

PIPS (Passivated Implanted Planar Silicon) detector, suited for charged particle spectroscopy, placed on the beamline \rightarrow beam particle stopped \rightarrow measure of energy and time of arrival

Test of the performance of a prototype monitor in terms of cavity phase scanning and longitudinal (energy & time) beam profile measurements

Canberra PIPS det

Area= 50mm² Thickness = 300 μm Bias voltage = +60 V Entrance window = 100 nm Capacitance = 30 pF Timing resolution < 140 ps

Mechanical support

Test setup inside one REX diagnostic box

Test setup in the Isolde hall

Electronic noise and alpha resolution

Nominal quoted by Canberra: electronic noise = 5.8 keV (FWHM) alpha resolution = 14.3 keV (FWHM) (0.26 %)

<u>Measured in diagnostic box DB5</u>: electronic noise = 10.6 keV (FWHM) alpha resolution = 21.2 keV (FWHM) (0.38 %)

Beam composition and intensity

- Ionized residual gas from inside the EBIS (typical pilot beam)
- A/Q=4 (typical): ¹²C³⁺, ¹⁶O⁴⁺, ²⁰Ne⁵⁺ + some ³⁶Ar⁹⁺...
- Repetition rate = 33 Hz and pulse length = 450µs
 → machine duty cycle = 1.5%
- Strong attenuation of the beam intensity to reach the kHz level inside the 450 μs pulse window: single particle detection regime

count rates of 1.5-7 kHz inside the 450 μ s pulse window \rightarrow 0.9 - 3 particles per pulse

- \rightarrow average count rate of 23-100 Hz (33 Hz repetition rate)
- Attenuation methods:
 - \rightarrow manipulation of EBIS parameter + collimators along the linac
 - ightarrow attenuator copper foils placed upstream and downstream the RFQ

Monitor energy resolution

REX BEAM SPECTRUM at 300 keV/u and A/Q=4

Average particle count rate = 100 Hz (count rate of 6.7 kHz in the RF pulse window)

> Helium, carbon, oxygen and neon peaks well identified

While varying REX beam energy from 300 keV/u to 3 MeV/u, the measured monitor energy resolution varies in the range from 3 to 1 % FWHM (or 1.3 to 0.4 % rms).

Cavity phase-up demonstration

<u>HIE-REX cavities in standard accelerating mode</u>: the simulated change in average energy ranges from \pm 15 % to \pm 3.5 % depending on the considered cavity \rightarrow the monitor energy resolution is compatible with a quick phase-up procedure

Monitor timing resolution

- VME TDC Caen V1290N characterized by a resolution of 25 ps (LSB)
- Reference signal = RF master clock of the cavities divided by a factor 14 → 7.2MHz

Reference signal resolution = 43 ps rms (98 ps FWHM) Detector "estimated timing resolution" = 140 ps

The system timing resolution is likely < 200 ps FWHM

Beam time profile

energy = 2.83 MeV (output energy of the 9-gap resonator) time structure of 14 bunches, with the **expected period of 9.87 ns**

Measured bunch length of 2.5 ns FWHM → compatible with the time spread expected at the output of the 9-gap resonator and after a drift of approximately 9 m to the silicon detector

ToF cavity phase-up

The bunches arrival time (ToF) vary up to 90 ns over the 10.6 m drift distance between the 7GP3 cavity and the silicon detector monitor

Bunch spacing of 9.87 ns \rightarrow challenging to differentiate between bunches arriving at the monitor \rightarrow phase must be varied slowly such that the bunch being tracked never moves more than 9.87 ns in arrival time and can always be identified \rightarrow too much time-consuming

Principle demonstrated \rightarrow viable option for cavity phasing should a chopper be incorporated in the HIE-ISOLDE upgrade and the bunch spacing increased

Conclusions & future developments

- A silicon detector monitor is being developed for a quick phase-up procedure of the HIE-ISOLDE linac cavities
- A first monitor prototype is now installed at REX and has been successfully tested on beam
- Further developments are foreseen for the final installation downstream the SC linac, for the eventually automated operation and for the integration of the DAQ system
- Next step: complete project of the inter-tank diagnostic boxes (for intensity and transverse profile measurement) and first prototype test

... thanks for your attention !