Ion beam production and manipulation at IGISOL

Ion guide method, the original

- Based on survival of primary ions from nuclear reaction in helium buffer gas
- Fast extraction of ions is required to prevent neutralisation
- Charge state concentration: (0), +1, (+2)
- Produces ions of any element

VOLUME 54, NUMBER 2

PHYSICAL REVIEW LETTERS

14 JANUARY 1985

Submillisecond On-Line Mass Separation of Nonvolatile Radioactive Elements: An Application of Charge Exchange and Thermalization Processes of Primary Recoil Ions in Helium

J. Ärje, J. Äystö,^(a) H. Hyvönen, P. Taskinen, V. Koponen, and J. Honkanen Department of Physics, University of Jyväskylä, SF-40100 Jyväskylä, Finland

and

A. Hautojärvi and K. Vierinen Department of Physics, University of Helsinki, SF-00170 Helsinki, Finland (Received 17 September 1984)

Transportation of thermalized primary recoil ions from nuclear reactions by helium flow has been investigated as a means of injecting short-lived radioactive nuclides into an on-line isotope separator. Several short-lived radioactive isotopes of highly nonvolatile elements such as B, Sc, Nb, and W have been separated. The efficiency for heavy nuclides with half-lives above 1 ms is between 1 and 10%. The shortest-lived activity identified in an on-line separation is the 182-µs isomeric state in 207 Bi.

Z selectivity by resonant laser ionization

Resonant laser ionization in a gas cell

Principle of gas jet LIST

Gas jet studies for improved LIST (JYFL)

M. Reponen, I.D. Moore et al., NIM A 635 (2011) 24

Manipulation of the atomic/ionic spin for laser spectroscopy

- Access to more accessible/efficient transitions
- New elements to study

JYFL

Manipulation of the atomic/ionic spin for laser spectroscopy

- Access to more accessible/efficient transitions
- New elements to study

JYFL

Unambigious identification of states by their MASS

Isomer Separation and Masses

Tommi Eronen

Unambigious identification of states by their MASS

Isomer Separation and Masses

Independent fission yields

- Independent or direct fission yields are directly related to fission cross section
- Mass yields, isotopic yields, elemental yields, and isobaric charge disrtibutions are cuts and projections of this

P.Karvonen, Thesis, Univ. Jyväskylä, 2010

Proton induced fission yields at IGISOL

proton vs. neutron induced fission

Proton induced fission

- fundamental research of most neutron rich nuclei
- n-induced fission yields: ERINDA

• p/n -conversion 0.1 - 2 %

- Moderation effects ?
- Spectrum shape ?
- Radiation protection ?

- fundamental research of most neutron rich nuclei
- n-induced fission yields: ERINDA

60

- Moderation effects ?
- Spectrum shape ?
- Radiation protection ?

Operation statistics of K130 (+ 3 sources)

Radiation effects facility, RADEF

Official test laboratory of ESA since 2005

ESTEC/Contract No. 18197/04/NL/CP "Utilisation of the High Energy Heavy Ion Test Facility for Component Radiation Studies"

- ESA beam times allocated upon request
- Non-ESA beam times on commercial basis or via PAC

22 users from 10 countries, e.g.

- CNES, Service Environnement Spatial et Composants Nouveaux, Toulouse, France
- CEA, Comité Européen des Assurances, Bruyere-le-Chatel, France
- EADS Space Transportation Co., Bremen, Germany
- Alter Technology Group, Spain
- IDA, Institut für Datentechnik und Kommunikationsnetze, Braunschweig, Germany
- INTA, Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain
- JAXA, Japan Aerospace Exploration Agency, Japan
- ONERA, Office National d'Etudes et de Recherches Aérospatiales, Toulouse, France
- Saab Ericsson Space Co., Gothenburg, Sweden
- Sandia National Laboratories, Albuquerque, USA
- Swedish Space Corporation, Stockholm, Sweden
- Thales Alenia Space Co., Toulouse, France

Radiation effects facility, RADEF

Heavy-ion line

- Cocktail species N, Ne, Si, Ar, Fe, Kr, Xe
- Energy 9.3 MeV/u, i.e. 1.2 GeV for Xe
- LET from 6 to 69 MeV/(mg/cm²) and range 90 to 200 μm in silicon

UNIVERSITY OF IYVÄSKYLÄ

· Irradiations both in vacuum and air

Proton line

- Energies from few MeV to 60 MeV, adjusted by the degraders
- · Irradiations in air

Specifications of beams

Heavy ions

- High penetration cocktail @ 9.3 MeV/amu
- Low energy coctail @ 3.6 MeV/amu
- Other beam energies at request
- Ion change time: **few min** (within the cocktail)
- Flux: 0 10⁶ ions/sec·cm² (depending on the ion)
- Spot size: 2x2 cm² (up to 7x7cm² demonstrated in vacuum)
- i.e. wide beam only
- Homogeneity: ±10%
- In vacuum and in air

Protons

- Energy: 0 60 MeV
- Flux: 100 10¹² p/sec·cm²
- Spot size: ~10 cm²
- Homogeneity: ±10%
- DUT mounting: standard plate (same in the heavy ion line)

Accelerator based materials physics

1.7 MV Pelletron tandem-accelerator donated by VTT in Sep. 2006 First beam Feb. 2007

Materials physics at Pelletron Laboratory

- Main research fields: Development and application of ion beam techniques for characterization and modification of surfaces, thin films and biomedical samples
- Key equipment:
 - 1.7 MV Pelletron accelerator, in Jyväskylä since 2006
 - Profilometer, scanning electron microscope, vacuum oven, 2 keV ion gun etc.

Possibilities at Pelletron Laboratory

- Ion beam analysis
 - Heavy ion time-of-flight elastic recoil detection analysis (TOF-ERDA)
 - Quantitative depth profiling of all elements, including hydrogen, down to level of 0.1 at.% or below
 - Different isotopes can be separated <50 u
 - With low energy incident ions depth resolution ~1nm at the surface, with higher energies profiling upto hundreds of nanometers
 - Rutherford Backscattering Spectrometry (RBS)
 - Sensitive and standard technique for depth profiling of heavy elements on a light substrate
 - Particle Induced X-ray Emission (PIXE)
 - Sensitive technique for measuring sample composition for elements heavier than AI without depth information
 - Proton microprobe with beam spot <10 μm will be installed in 2011
- Ion beams for irradiation/detector testing
 - Direct quasi-monoenergetic direct or scattered beams are available for irradiation and detector testing in the energy range of 0.2-15 MeV (highest energies for heavy ions)

Beam 10. 2 MeV ⁷⁹Br, boroslicate sample

Energy

JYFL Accelerator Laboratory upgrade

0 5 10m

JYFL Accelerator Laboratory upgrade

MCC30/15 specifications:

Magnet structure:

Four sectors, pole diameter 150 cm <T> = 1.25 T, coil power 12 kW Weight over 50 tons

RF-system:

Frequency 40.68 MHz and dee voltage 40 kV generating 25 kW output power

Power consumption:

<120 kW / < 8 kW (Power on / Standby)

lon source:

External CUSP-type source delivering up to 0.7/1.5 mA

Ion beams: Protons (H⁻) 18-30 MeV, 100 μ A [3kW] Deuterons (d⁻) 9-15 MeV, 50 μ A

Beams specifications reached (with pulsed beam) ! New ion source to be developed

➔ higher intensity (~300 µA [10 kW]) and longer lifetime of the cathode

JYFL Accelerator Laboratory upgrade

IGISOL4

IGISOL4 + EURISOL-NET

Off-line

sources

- Neutron converter development
- Optical manipulation in the cooler
- Hot cavity ion source with inductive heating
- Further developments:

LASER

- Ramsey cleaning
- Multiple injection
- Drift section ?
- New extraction scheme ?
- New projects: New RFQ, EBIT, MTOF, ...

+ JYFL installations for radiation tests, ion beam modification and analysis

Ari Jokinen E-mail: ari.s.jokinen@jyu.fi

http://www.jyu.fi/science/laitokset/fysiikka/en/research/accelerator